NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

REPORT No. 210

INERTIA FACTORS OF ELLIPSOIDS FOR USE IN
AIRSHIP DESIGN

By L. B. TUCKERMAN

WASHINGTON
GOVERNMENT PRINTING OFFICE
1935
AERONAUTICAL SYMBOLS.

1. FUNDAMENTAL AND DERIVED UNITS.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Metric Unit</th>
<th>English Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>l</td>
<td>m</td>
</tr>
<tr>
<td>Time</td>
<td>t</td>
<td>sec</td>
</tr>
<tr>
<td>Force</td>
<td>F</td>
<td>kg</td>
</tr>
<tr>
<td>Power</td>
<td>P</td>
<td>horsepower</td>
</tr>
<tr>
<td>Speed</td>
<td>m/s</td>
<td>mi/hr</td>
</tr>
</tbody>
</table>

Weight, \(W = mg \).
Standard acceleration of gravity, \(g = 9.806 \text{m/sec}^2 = 32.172 \text{ft/sec}^2 \).
Mass, \(m = \frac{W}{g} \).
Density (mass per unit volume), \(\rho \).
Standard density of dry air, \(0.1247 \text{ (kg.-m.-sec.) at 15.6^\circ C and 760 mm.)} = 0.00237 \text{ (lb.-ft.-sec.)} \).

True airspeed, \(V \).
Dynamic (or impact) pressure, \(q = \frac{1}{2} \rho V^2 \).
Lift, \(L \); absolute coefficient \(C_L = \frac{L}{qS} \).
Drag, \(D \); absolute coefficient \(C_D = \frac{D}{qS} \).
Cross-wind force, \(C \); absolute coefficient \(C_v = \frac{C}{qS} \).
Resultant force, \(R \).
(Note that these coefficients are twice as large as the old coefficients \(C_L, D \).)
Angle of setting of wings (relative to thrust line), \(\alpha \).
Angle of stabilizer setting with reference to thrust line, \(\beta \).

2. GENERAL SYMBOLS, ETC.

Specific weight of "standard" air, \(1.223 \text{ kg/m}^2 = 0.07635 \text{ lb/ft}^2 \).
Moment of inertia, \(mk^2 \) (indicate axis of the radius of gyration, \(k \), by proper subscript).
Area, \(S \); wing area, \(S_w \), etc.
Gap, \(G \).
Span, \(b \); chord length, \(c \).
Aspect ratio = \(b/c \).
Distance from c.g. to elevator hinge, \(f \).
Coefficient of viscosity, \(\mu \).

3. AERODYNAMICAL SYMBOLS.

Dihedral angle, \(\gamma \).
Reynolds Number = \(\frac{\rho l V}{\mu} \), where \(l \) is a linear dimension.
e.g., for a model airfoil 3 in. chord, 100 mi/hr., normal pressure, \(0^\circ C \): 255,000 and at \(15.6^\circ C \), 230,000;
or for a model of 10 cm. chord, 40 m/sec., corresponding numbers are 299,000 and 270,000.
Center of pressure coefficient (ratio of distance of C.P. from leading edge to chord length), \(C_{\alpha} \).
Angle of stabilizer setting with reference to lower wing, \((\alpha - \beta) \).
Angle of attack, \(\alpha \).
Angle of downwash, \(\epsilon \).
REPORT No. 210

INERTIA FACTORS OF ELLIPSOIDS FOR USE IN AIRSHIP DESIGN

By L. B. TUCKERMAN
Bureau of Standards
ADDITIONAL COPIES
OF THIS PUBLICATION MAY BE PROCURED FROM
THE SUPERINTENDENT OF DOCUMENTS
GOVERNMENT PRINTING OFFICE
WASHINGTON, D. C.
at
5 CENTS PER COPY
REPORT No. 210

INERTIA FACTORS OF ELLIPSOIDS FOR USE IN AIRSHIP DESIGN

By L. B. TUCKERMAN

This report is based on a study made by the writer as a member of the Special Committee on Design of Army Semirigid Airship RS-1 appointed by the National Advisory Committee for Aeronautics.

The increasing interest in airships has made the problem of the potential flow of a fluid about an ellipsoid of considerable practical importance. In 1833 Green, in discussing the effect of the surrounding medium upon the period of a pendulum, derived three elliptic integrals, in terms of which practically all the characteristics of this type of motion can be expressed. The theory of this type of motion is very fully given by Lamb and applications to the theory of airships by many writers. Tables of the inertia coefficients derived from these integrals are available for the most important special cases. These tables are adequate for most purposes, but occasionally it is desirable to know the values of these integrals in other cases where tabulated values are not available. For this reason it seemed worth while to assemble a collection of formulæ which would enable them to be computed directly from standard tables of elliptic integrals, circular and hyperbolic functions, and logarithms without the need of intermediate transformations. Some of the formulæ for special cases (elliptic cylinder, prolate spheroid, oblate spheroid, etc.) have been published before, but the general forms and some special cases have not been found in previous publications.

The additional inertia of the translational potential flow of a fluid about triaxial ellipsoid is proportional to the three coefficients

\[K_1 = \frac{4\pi}{3} \, abc \, k_1, \quad K_2 = \frac{4\pi}{3} \, abc \, k_2, \quad K_3 = \frac{4\pi}{3} \, abc \, k_3 \]

Here \(\frac{4\pi}{3} \, abc \) is the volume of the ellipsoid and

\[k_1 = \frac{\alpha_0}{2 - \alpha_0}, \quad k_2 = \frac{\beta_0}{2 - \beta_0}, \quad k_3 = \frac{\gamma_0}{2 - \gamma_0} \]

The additional moment of inertia of the rotational potential flow is proportional to the three coefficients

\[K'_1 = \frac{4\pi}{3} \, abc \, \frac{b^2 + c^2}{5} \, k'_1, \quad K'_2 = \frac{4\pi}{3} \, abc \, \frac{a^2 + c^2}{5} \, k'_2, \quad K'_3 = \frac{4\pi}{3} \, abc \, \frac{a^2 + b^2}{5} - k'_3 \]

Here \(k'_1, k'_2, \) and \(k'_3 \) are given as factors of the corresponding moments of inertia of the ellipsoid itself and

\[k'_1 = \left(\frac{b^2 - c^2}{b^2 + c^2} \right)^3 \frac{\gamma_0 - \beta_0}{2} \, \frac{\beta_0 - \gamma_0}{b^2 - c^2} \, \frac{\gamma_0 - \alpha_0}{b^2 + c^2 - (\alpha_0 - \beta_0)} \]

with symmetrical expressions for \(k'_2 \) and \(k'_3 \).
In the above formulae \(\alpha, \beta, \) and \(\gamma \) are the special values for \(\lambda = 0 \) of Green's integrals

\[
\alpha = abc \int_{1}^{\infty} \frac{d\lambda}{(a^2 + \lambda) \Delta}, \quad \beta = abc \int_{1}^{\infty} \frac{d\lambda}{(b^2 + \lambda) \Delta}, \quad \gamma = abc \int_{1}^{\infty} \frac{d\lambda}{(c^2 + \lambda) \Delta}
\]

\(\Delta = \sqrt{(a^2 + \lambda)(b^2 + \lambda)(c^2 + \lambda)} \)

To transform these integrals into the standard Legendre form substitute

\[
\frac{d\lambda}{\Delta} = \frac{2}{\sqrt{a^2 - c^2}} \, du
\]

This gives

\[
a^2 + \lambda = \frac{a^2 - c^2}{\text{sn}^2 u}, \quad b^2 + \lambda = \frac{a^2 - c^2}{\text{dn}^2 u}, \quad c^2 + \lambda = \frac{(a^2 - c^2)}{\text{cn}^2 u}
\]

and

\[
\text{sn} u = \frac{\text{sn} u}{k^2} \left[E(u) - k'^2 u - k^2 \, \text{sn} \, \text{cn} u \right]
\]

Here

\[
\text{sn} \, \text{dn} = \frac{\sqrt{(a^2 - c^2)(b^2 + \lambda)}}{(a^2 + \lambda)(c^2 + \lambda)} \, \text{sn} \, \text{cn} u = \frac{\sqrt{(a^2 - c^2)(c^2 + \lambda)}}{(a^2 + \lambda)(b^2 + \lambda)}
\]

and

\[
u = \sin^{-1} \frac{\sqrt{(a^2 - c^2)}}{a^2 + \lambda} = F(\varphi; k) \text{ where } \varphi = \sin^{-1} \sqrt{\frac{a^2 - c^2}{a^2 + \lambda}}
\]

The values of \(\nu = F(\varphi; k) \) and \(E(u) = E(\varphi; k) \) can be obtained directly from standard tables of elliptic integrals.

Note.—The notation of elliptic integrals is not standardized. Some authors write the elliptic integral of the second kind as a function of the amplitude \(\varphi \). Some write the argument first and the modulus or modular angle second; some reverse the order, and some use one form at one time and another at another. Thus we may find the following forms:

\[
u \equiv F(\varphi; k) \equiv F(k; \varphi) \equiv F(\varphi; \theta) \equiv F(\theta; \varphi)
\]

\[
E(u) \equiv E(u; k) \equiv E(u; \theta) \equiv E(\varphi; k) \equiv E(\varphi; \theta) \equiv E(\theta; k)
\]

The more usual tables tabulate the functions according to the amplitude \(\varphi \) and the modular angle \(\theta \) so that

\[
u \equiv F(\varphi; \theta) \equiv E(\varphi; \theta)
\]

where

\[
\varphi = \sin^{-1} \frac{\sqrt{a^2 - c^2}}{\sqrt{a^2 + \lambda}}, \quad \theta = \sin^{-1} \frac{\sqrt{a^2 - b^2}}{\sqrt{a^2 - c^2}}
\]

However, the latest, and for some purposes the most convenient, tables by R. L. Hippisley tabulate \(u = F_\varphi = F(\varphi; \theta) \) and \(E(u) = E(r) + eE \) according to \(r \), where \(r^2 = 90^\circ e = 90^\circ \frac{u}{K} \).

Smithsonian Mathematical Formulae (1925), pp. 260-269.
When \(\lambda = 0 \) the formulae simplify to

\[
\alpha_0 = \frac{2abc}{(a^2 - b^2)(a^2 - c^2)^{1/2}} [u_0 - E(u_0)]
\]

\[
\beta_0 = \frac{2abc}{(a^2 - b^2)(b^2 - c^2)} \left[E(u_0) - \frac{b^2 - c^2}{a^2 - c^2} u_0 - \frac{(a^2 - b^2)}{ab(a^2 - c^2)^{1/2}} \right]
\]

\[
\gamma_0 = 2 \frac{ac}{b(a^2 - c^2)^{1/2}} E(u_0)
\]

Here

\[
\phi_0 = \sin^{-1} \frac{\sqrt{a^2 - c^2}}{a} = \sin^{-1} \epsilon, \quad u_0 = F(\phi_0; \theta)
\]

\[
\theta = \sin^{-1} \sqrt{\frac{a^2 - b^2}{a^2 - c^2}} = \sin^{-1} \frac{\epsilon_1}{\epsilon}, \quad E(u_0) = E(\phi_0; \theta)
\]

where \(\epsilon_1 \) and \(\epsilon_2 \) are the eccentricities of the central sections normal to the intermediate (\(b \)) and minimum (\(c \)) axes of the ellipsoid.

These formulae are sufficient for the direct evaluation of \(k_1, k_2, k_3, k'_1, k'_2, \) and \(k'_3 \) in the general case. However, in special cases the elliptic integrals degenerate into algebraic, circular, hyperbolic, or other functions, or the coefficients take on indeterminate forms needing special treatment. The results for many of these special cases are more readily obtained by direct integration of the special differential forms, but for uniformity are discussed here as limiting forms of the general elliptic integrals.

1. **VERY LONG ELLIPSOID.** Limiting case an elliptic cylinder. As \(a \) becomes large so that higher powers of both \(\frac{c}{a} \) and \(\frac{b}{a} \) become negligible \(k = 1 \) and at the same time \(\phi_0 = \frac{\pi}{2} \).

In the limit since \(x \log x \approx 0 \)

\[
\alpha_0 = 0, \quad \beta_0 = \frac{2b}{1 + b}, \quad \gamma_0 = \frac{2c}{1 + b}
\]

These are of course more directly obtained by treating the two dimensional flow around an elliptic cylinder.\(^7\)

2. **ELLIPSOID DISK.** \(c = 0 \). To quantities of the first order in \(c \)

\[
\alpha_0 = \frac{2c}{b(a^2 - b^2)} [b^2 u_0 - b^2 E(u_0)]
\]

\[
\beta_0 = \frac{2c}{b(a^2 - b^2)} [a^2 E(u_0) - b^2 u_0]
\]

\[
\gamma_0 = 2 \left[1 - \frac{c}{b} E(u_0) \right]
\]

In the limit \(c = 0, \quad \phi_0 = \frac{\pi}{2} \), so that \(u_0 = K \) and \(E(u_0) = E \), the complete elliptic integrals, mod \(\frac{\sqrt{a^2 - b^2}}{a} = \epsilon \).

Then in the limit \(\alpha_0 = \beta_0 = 0, \quad \gamma_0 = 2 \), so that \(k_3 = k_4 = 0 \), but \(k_5 = \infty \).

Thus \(K_1 = K_2 = 0 \) and \(K_3 \) needs special evaluation:

\[
K_3 = \frac{4}{3} \frac{\pi abc}{\alpha_0} - \frac{4}{3} \frac{\pi abc}{\beta_0} + \frac{4}{3} \frac{\pi abc}{\gamma_0} - \frac{1 - \frac{c}{b} E(u_0)}{\frac{c}{b} E(u_0)}
\]

\(^7\) Horace Lamb, l.c., pp. 79-86.
In the limit \(c = 0 \)

\[
K_s = \frac{4\pi ab^3}{3E}, \quad \text{mod} \quad k = \frac{\gamma a^2 - \beta}{a} = e
\]

when \(a = b \) (circular plate) \(k - e = 0 \), \(E = \frac{\pi}{2} \), so that \(K_s = \frac{8}{3} a^2 \).

Again to quantities of the first order in \(c \)

\[
k'_1 = \frac{\gamma_0 - \beta_0}{2 - (\gamma_0 - \beta_0)}
\]

\[
k' = \frac{\gamma_0 - \alpha_0}{2 - (\gamma_0 - \alpha_0)}
\]

\[
k'_s = \frac{(a^2 - b^2)^2}{a^2 + b^2} = \frac{\beta_0 - \alpha_0}{a^2 - b^2 - (\beta_0 - \alpha_0)}
\]

In the limit \(c = 0, k'_s = 0 \), but \(k'_1 \) and \(k'_2 \) become infinite as \(\frac{1}{c} \). To this order of approximation,

\[
2 - (\gamma_0 - \beta_0) = 2 \frac{c}{b(a^2 - b^2)} [(2a^2 - b^5) E (u_0) - b^2 u_0]
\]

\[
2 - (\gamma_0 - \alpha_0) = 2 \frac{c}{b(a^2 - b^2)} [(a^2 - 2b^2) E (u_0) + b^2 u_0]
\]

so that when \(c = 0 \)

\[
K'_1 = \frac{4\pi}{15} \frac{ab^3 (a^2 - b^2)}{[(2a^2 - b^5) E - b^2 K]}
\]

\[
K'_2 = \frac{4\pi}{15} \frac{a^2 b^2 (a^2 - b^2)}{[(a^2 - 2b^2) E + b^2 K]}
\]

When \(a = b \) (circular disk), these become indeterminate, since \(k = 0 \) and \(E \approx K = \frac{\pi}{2} \). To quantities of the first order in \((a^2 - b^2), (K - E) = \frac{\pi a^2 - b^2}{4} \), so that \(K'_1 = K'_2 = \frac{16}{45} a^3 \).

3. Oblate spheroid. \(a = b > c, k = 0, k' = 1 \).

\[
E(u) = u = \varphi = \sin^{-1} \sqrt{\frac{a^2 - c^2}{a^2 + \lambda}} \sin^{-1} \frac{e}{\sqrt{1 + \frac{\lambda}{a^2}}}
\]

and \(\lim_{k \to 0} \frac{1}{k^3} [u - E(u)] = 1/2 \) (\(\varphi - \sin \varphi \cos \varphi \))

\[
k = 0
\]

then

\[
\alpha = \beta = \frac{2a^2 c}{(a^2 - c^2)^{3/2}} \frac{1}{2} (\varphi - \sin \varphi \cos \varphi) = \frac{2\sqrt{1 - e^2}}{e^2} \frac{1}{2} \left(\varphi - e \sqrt{1 - e^2} \right)
\]

\[
\gamma = \frac{2a^2 c}{(a^2 - c^2)^{3/2}} (\tan \varphi - \varphi) = \frac{2\sqrt{1 - e^2}}{e^2} \left(e \sqrt{1 - e^2} - \varphi \right)
\]

When \(\lambda = 0, \varphi = \sin^{-1} e \), so that

\[
\alpha_0 = \beta_0 = \frac{\sqrt{1 - e^2}}{e^2} \left(\sin^{-1} e - e \sqrt{1 - e^2} \right)
\]

\[
\gamma_0 = 2 \frac{\sqrt{1 - e^2}}{e^2} \left(e \sqrt{1 - e^2} - \sin^{-1} e \right)
\]
In the limiting case $c=0$, $e=1$ (circular plate) these give as before

$$K_1 = K_2 = 0, \quad K_3 = \frac{8}{3} a^3$$

$$K_1' = K_2' = 0, \quad K_3' = \frac{16}{45} a^3, K_3' = 0$$

4. PROLATE SPHEROID. \(a > b = c, \ k = 1, \ k' = 0, \ \varphi = \text{gd} \ u \). Then

$$\alpha = \frac{2ac^3}{(a^2 - c^2)^{3/2}} (u - \tanh u)$$

$$\beta = \frac{2ac^3}{(a^2 - c^2)^{3/2}} 1/2 (\sinh u \cosh u - u)$$

where

$$\tanh u = \sin \varphi = \frac{\sqrt{a^2 - c^2}}{a^2 + \lambda} = \frac{e}{\sqrt{1 + \frac{\lambda}{a^2}}} = \frac{ac^3}{(a^2 - c^2)^{3/2}} \frac{1 - e^3}{e^3}$$

$$\sinh u \cosh u = \frac{\sqrt{(a^2 - c^2)(a + \lambda)}}{c^2 + \lambda} = \frac{e^3 \sqrt{1 + \frac{\lambda}{a^2}}}{1 - e^3 + \frac{\lambda}{a^2}}$$

and

$$u = \log \sqrt{\frac{1 + \sin \varphi}{1 - \sin \varphi}} = \log \tan \left(\frac{\pi + \varphi}{4} \right)$$

when $\lambda = 0$, these reduce to

$$\alpha = \frac{(1 - e^3)}{e^3} \left[\log \frac{1 + e}{1 - e} - 2e \right]$$

$$\beta = \frac{(1 - e^3)}{e^3} \left[\frac{e}{1 - e^3} - 1/2 \log \frac{1 + e}{1 - e} \right]$$

The special cases 3 and 4 are of course more readily obtained by direct integration.
Positive directions of axes and angles (forces and moments) are shown by arrows.

<table>
<thead>
<tr>
<th>Axis</th>
<th>Force (parallel to axis) symbol</th>
<th>Moment about axis逐渐</th>
<th>Angle</th>
<th>Velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>Symbol</td>
<td>Designation</td>
<td>Symbol</td>
<td>Designation</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>Z</td>
<td>rolling</td>
<td>L</td>
<td>roll</td>
</tr>
<tr>
<td>Lateral</td>
<td>Y</td>
<td>pitching</td>
<td>M</td>
<td>pitch</td>
</tr>
<tr>
<td>Normal</td>
<td>Z</td>
<td>yawing</td>
<td>N</td>
<td>yaw</td>
</tr>
</tbody>
</table>

Absolute coefficients of moment

\[
C_I = \frac{L}{q \delta S} \quad C_m = \frac{M}{q c S} \quad C_n = \frac{N}{q f S}
\]

Angle of set of control surface (relative to neutral position), \(\delta\). (Indicate surface by proper subscript.)

4. PROPELLER SYMBOLS.

- Diameter, \(D\)
- Pitch (a) Aerodynamic pitch, \(p_a\)
 (b) Effective pitch, \(p_e\)
 (c) Mean geometric pitch, \(p_g\)
 (d) Virtual pitch, \(p_v\)
 (e) Standard pitch, \(p_s\)
- Pitch ratio, \(p/D\)
- Inflow velocity, \(V'\)
- Slipstream velocity, \(V_s\)
- Thrust, \(T\)
- Torque, \(Q\)
- Power, \(P\)
 (If "coefficients" are introduced all units used must be consistent.)
- Efficiency \(\eta = \frac{T}{V/P}\)
- Revolutions per sec., \(n\); per min., \(N\)
- Effective helix angle \(\Phi = \tan^{-1}\left(\frac{V}{2\pi r n}\right)\)

5. NUMERICAL RELATIONS.

<table>
<thead>
<tr>
<th>1 HP = 76.04 kg. m/sec. = 550 lb. ft/sec.</th>
<th>1 lb. = 0.45359 kg.</th>
<th>1 kg. = 2.20462 lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kg. m/sec. = 0.01315 HP</td>
<td>1 m. = 1609.35 m. = 5280 ft.</td>
<td></td>
</tr>
<tr>
<td>1 mi/hr. = 0.44704 m/sec.</td>
<td>1 m. = 3.28083 ft.</td>
<td></td>
</tr>
</tbody>
</table>