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SUMMARY

An analytic, closed-form friction formula for turbulent, internal, compressible, fully developed flow has

been derived by extending the incompressible law-of-the-wall relation to compressible cases. The model is

capable of analyzing heat transfer as a function of constant surface temperatures and surface roughness as well

as analyzing adiabatic conditions. The formula reduces to Prandtl's law of friction for a_abatic, smooth, axi-

symmetric flow. In addition, the formula reduces to the Colebrook equation for incompressible, adiabatic,

axisymmetric flow with various roughnesses. Comparisons with available experiments show that the model

averages roughly 12.5-percent error for adiabatic flow and 18.5-percent error for flow involving heat transfer.

A',B"

B

C

cs
%

C v

Cl,C 2

D

E

H

h

k+

M

SYMBOLS

"locally" defined variables (no formal association, used for convenience)

law-of-wail variable, 5.5

locally defined constant

coefficient of friction, 2xw/pu 2

specific heat (constant pressure)

specific heat (constant velocity)

integration constants

pipe diameter

locally defined constant

total enthalpy, h + (1/2)u 2

enthalpy

roughness height; inner law variable

Mach number

i
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Prandtl number

pressure

universal gas constant; radius

Reynolds number

recovery factor (Crocco-Busemann relation law), Pr 1/3

temperature

averaged velocity

flow velocity

velocity; inner law variable

friction velocity, (x_/pw) 1/2

physical wall variable

wall variable; inner law variable

ratio of specific heats, cplc v

Von Karman constant, 0.4

Darcy friction factor

relative roughness

absolute or dynamic viscosity

kinematic viscosity

p density

x shear stress

Subscripts:

av average value

w wall value

INTRODUCTION

A general, closed-form analytical solution describing a particular flow might be considered the "ultimate"
mathematical fluid dynamics model because of its inherent flexibility and simplicity of use. Unfortunately,

retaining adequate physical information in such a model is usually in conflict with our ability to reduce the
solution to closed form. Typically, we are forced to discretize the problem and transform it to a large system of

equations that are amenable to numerical solution techniques. The rapid growth in the availability of high-

performance computing platforms has permitted the numerical solution of these large systems of governing

differential equations by computational fluid dynamics methodologies. However, semiempirical or integral

models are still capable of providing closed-form engineering estimates of flow physics in a highly cost-
effective manner. This efficiency is particularly desirable for preliminary design analyses, where a large design

space may need to be characterized. The goal of the present study was to develop a closed-form friction formula
for turbulent, internal, compressible axisymmetric or two-dimensional duct flow. These flows are of interest both
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in theirownrightandasa simplelimitingapproximationfor morecomplexinternalinletandnozzleflows
(ref. 1).

Applicationsincludemodelingof acousticlinersfor high-speedcivil transport(HSCT)nozzlesandnational
aerospaceplane(NASP)propulsionsystemflow-pathmodeling.Further,this typeof analysismaybeusedto
providefirst-principleestimatesof enginecomponentefficiencies(losses)for cycleanalysistools,suchasthe
NNEP(theNASA/NAVYEngineProgram,ref. 2). In addition,becauseheattransferanalysisisavailable,this
modelmayprovidesignificantinformationfor usein structuralanalysisproblems.

As indicated,thefrictionmodelassumesfully developedflow andcanmodelsurfaceroughnessaswell as
constant-wall-temperatureheattransfer.Themodelis relativelysimplebecauseit essentiallyextendstheincom-
pressiblelaw-of-the-wailrelationto includecompressibilityeffects.TheCrocco-Busemannrelation,anapproxi-
matesolutionto theenergyequation,is usedto modeltheheattransfer.Consequently,thePrandtlnumberis
assumedto beapproximately1for thisanalysis.By requiringthegoverningequationsto reduceto theincom-
pressiblelimit,necessaryconstantsof integrationcanbeevaluated,thuspermittingaclosed-formfriction
coefficientrelationshipto bedetermined.In orderto gaininsightinto themodel'sreliability,theresultsof the
analysisarecomparedwithavailableexperimentaldata.

ANALYSIS

Thebasicmethodologyfollowedin ourdevelopmentinvolvestwosteps.First,a compressibleextensionto
thePrandtlmixing-lengthhypothesisis integratedto yieldaneffectivevelocityrelation.Temperature/density
dependenceis modeledby anapproximateenergyintegral,theCrocco-Busemann relation, and the ideal-gas
relation. Second, this effective velocity is averaged and applied to the fully developed flow relation, yielding an

implicit equation for the fully developed skin friction coefficient.

To begin our analysis, we consider the shear stress closure by using Prandtl's mixing-length hypothesis

The energy equation is approximately integrated by using the Crocco-Busemann relation (ref. 3)

H = ClU + C2

(l)

(2)

assuming that Pr -- 1 and the pressure gradient is small. Therefore, with the definition of total enthalpy

2
H=h+ u

2

u 2
h + _ = ClU + c2

2

(3)

and assuming that

(4)



equation (3) then becomes

u 2 (5)
cpT + _ = ClU + C22

The "no slip" boundary condition dictates that u(0) = 0. Evaluating equation (5) at the wall and assuming

that the velocity u approaches an average as the temperature T goes to its average, the constants are computed as

C2 = CpT w

c I =

2
Cp(Tav - Tw) + Uav/2

Uav

(6)

Substituting into equation (5) gives

t 2ku 2 Uav

cpT+ _ = p(Tav- T w) + _ + CpTw2 _1Uav

(7)

And solving for T yields

I avT = - T., + 2cpj uav + T,,..,,- _ cp

(8)

Note that to partially ameliorate the Prandtl number (Pr = 1) assumption, a recovery factor r was added to give

somewhat better accuracy. Its value depends on the local Prandtl number and for air in turbulent flow is about

r = 0.88 (ref. 2).

With the calorically perfect gas assumption

(9)

and

Ma2v Uav

(10)

it can be shown that

T [1-Tw l M2av_uUav Twl )vlu_v I= _ +-_(T- I) + _- (y- 1)M r

(11)

4



Multiplying equation (11) by Tav/T w yields

= 2 av U r+ 1T Tav_l + l(y - Tar ..2 _ 1(./_ 1 (12)

Applying the equation of state (ideal gas) and relevant boundary layer assumptions (dpldy small)

dp _ 0, Pay = Pw, P = pRT, -Pw _ T
dr p rw

(13)

combined with

where

__=T 1 + A'IU 1- B'21u ?

rw ku.vJ t&vj

A" - Tav 1 _ l)Mav__w-1 +_-(7

B,2 - 1(_, Tar 2- 1) ___.._Mayr
(14)

yields

P __
w m

Pw (15)

This expression is substituted into the original mixing-length formula

p Uy2
(16)

which yields

_u

as J

Xw 1

pw lC2y2 2
nay

(17)
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Separatingandintegrating

f 1

1 -11/2
ua,, (u:,,jj

dr
In mY + const

UavK

yields

-2B'2._.__u + A']

v* In y + const Uav " | Uav /= _ arcsln _ .... /

k 8' L(48,2+ A'E)l/zJ

(18)

(19)

where friction velocity is defined as

(20)

To evaluate the integration constant, the constraint applied is that the preceding equation must reduce to the

incompressible case

u + =_1 Iny++B (21)
K

for low Mach number flow (Mav= 0). The integration constant may be split into two pieces for clarity:

const = const 1 + const 2
(22)

Rewriting the left-hand-side length scale (which is justifiable because it involves merely adding a constant)

gives

Y --_ y+ = yv____, (23)
V w

and from the incompressible law of the wall, const 1 is defined as

-1 (24)



The second constant const 2 is defined by considering the limit B' defined previously as approaching zero. The

term

Uav

lim/r_+o _ arcsin

-2B' 2...._u
Uav (25)

(4B '2 + A'2) I/2

is bounded, whereas

1 A" (26)
lim/r.oo _ arcsin (4B '2 + A'2) 1/2

is not. Since physically the limit should be finite, it is justifiable (because, again, it is merely a constant) to

define the second integration constant as

1 A'

const 2 - B._r arcsin A'2) 1/2 (27)(4B "2 +

This rather subtle but physically reasonable line of argument defines the integration constants.

Further, a classical modification of the incompressible law of the wall may be used to develop an expres-

sion that takes the duct roughness into account. To do so, White (ref. 3) suggests the following modification to

the incompressible law of the wall:

/

u + 1 In yv*=_ _+B
l( V w

where

B =5.5--1 In (1 + 0.3k +) (28)
K

k + kv*

V w

Combining the previous relations yields the Van Driest effective velocity (ref. 2)

A'-v* 1 In y+ + 5.5 - 1 In (1 + 0.3k +) = sin Uav - arcsin
Ua"-v _: _" (4B,2 + A'2) 1/2

a ]
(4B '2 + A'2) 1/2

(29)



Becauseall flow propertiesmustbe relatedto eitherwall valuesor flowaveragequantifies,theaverageof
theprecedingrelationmustbeobtained.By averagingequation(29)overthearea,it canbedemonstratedthat
for apipetheleft-handsidebecomes

-if+=_1 In_Rv* + 1.75-2.5 In (1 +0.3k+)
K V w

(30)

The last term in this equation is the roughness term. Note that for smooth walls (k + = 0) this roughness term

vanishes.

Unfortunately, no such "elementary" integration will be available for the fight-hand side (RHS). However, a

simple approximation is available that calls for defining this average by replacing u by Uav, yielding

_.r, larc A' - 2B '2RHSav - sin A'2) 1/2(4B '2 +

+ -arcsin a 1
(4B" 2 + A' 2) 1/2

(31)

Separately, skin friction is defined as

1 2

Xw = _ CfPa v Uav (32)

where (7/is the desired coefficient of friction. Thus, the friction velocity can be expressed from equations (32)
and (19) as

I'Cw_/2 = v, _ (2)1/2 C 1/2 (Pav _/2 _ (33,

and from equation (13)

Pay_ Tw (34)
Pw Tav

Then we obtain

v* _ (2)I#2cll2ITw _ t2

Uav 2

(35)

permitting us to write the Reynolds number relation

Rv* (2)1/2 r 1/2_ (Tw'_ 12
__ = __,.._ Kel--._l

ray 4 J tTavJ

(36)



whereR here is the characteristic duct radius or hydraulic radius. Evaluating viscosity by using Suthedand's

relation

Pay Tar 1.505

law Tw 1+ 0.505 Tw

ray

(37)

where

Vav PavPw
m

Vw PwPav

and combining with equation (36) give

Rv*

V W

(38)

Recalling that

k + = Re
k v* Vav

D Uav v w

where

V*

Uav

with

(39)

then it follows that

k +

= Re k (2) 1/2 _1/2 Tar( 1.505 /._C? -_-Wla +0.505_ v

(40)



Combiningthepreviousrelationsyields

_ - sin-I A,2)l/2, =B'v* (4B ,2 + A'2) 1/2 (4B '2 +
In R ÷ + 1.75 - 2.5 In (1 + 0.3k+)]

By substituting equations (38) and (40) into equation (41) and defining the following constants (for both

axisymmetric and two-dimensional flows)

(41)

a 'w

CsinlI 2a] si:lf a ]' 1/2 A,2)1/2'
L(4B +A ) (4B'2 +

(42)

the final form of the equation is obtained:

C

C;/2[ 1 (T-1)M2avrI/2

= const + 1.77 In (C;r2Re) + 1.77 In E - 1.77 In
(1+ 0.2121 Rek c;r2"E 1

where const = -0.6005 for axisymmetric flow or 1.5086 for two-dimensional duct flow.

(43)

RESULTS AND DISCUSSION

Equation (38) represents the final closed-form solution for the skin friction coefficient. It is immediately

obvious that the equation simplifies the solution for isothermal systems where Tw = Tav. For smooth pipes or

ducts the roughness term disappears. An initial comparison with Prandfl's law of friction for smooth pipes

1 f 1= 2.0 log Re(2.) 1/2 - 0.8
(X)m

o.

shows that the model is consistent to within 2 percent over a range from Re = 103 to Re = 107 (see table I, from

ref. 41). This consistency is really no surprise in that the model was developed to recover the incompressible
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limit as described by Prandtl's law. However, Prandtl's law does not consider roughness, heat transfer, or com-

pressibility effects.

In adiabatic systems where

= 1 + (7- 1) M2
rav

it is more difficult to see how the formula reduces. A much simpler approach would be to numerically compare

the closed solution with experimental data points as a function of TwlTav.

Experimental data points have thus also been compared directly with the model The more diverse these

experimental flow conditions are, the more fully the model can be tested. Therefore, the experiments of interest

range from two-dimensional duct flow to axisymmetric flow, both subsonic and supersonic flows as well as
adiabatic and nonadiabatic flows. Discretion must be exercised when comparing actual data points with this

model. First, extracting data indirectly off graphs and charts may often lead to inaccurate data readings. Second,

experimental data points obtained with the use of Preston tubes are generally regarded as having an uncertainty

of 10 to 20 percent (ref. 5). Laser interferometer skin friction (LISF) techniques are generally regarded as

having better accuracy (see ref. 5).

Table H shows skin friction estimates predicted by our model and measurements made in a square duct

(ref. 6). This comparison is made for adiabatic, smooth, two-dimensional duct flow. In addition, the data point

represents an average experimental friction coefficient across the width of the duct. The comparison is encourag-

ing, although if roughness were included, the results would probably be somewhat better.

To show this sensitivity to roughness, table HI tabulates skin friction coefficients as a function of roughness
for an adiabatic flow. Nevertheless, with roughness effects neglected, the model generally predicts skin friction

within errors of less than 20 percent.

In figure 1 the data points are much more scattered. This scattering may be related to the facts that only the
inlet conditions were given for this experiment. Local conditions were estimated by using an adiabatic, viscous

loss analysis (ref. 1). The results were then fed into the friction model. Therefore, the data points are only esti-

mates of the relevant properties.

Figure 2 compares the model with friction measurements made in a U-tube (ref. 7) in a fully developed

region. Less error is associated with this experiment, possibly because data were obtained by using laser inter-

ferometry rather than traditional Preston tubes. Because of this, the model agrees within an assumed 10-percent

margin of uncertainty. This comparison shows that the model reduces accordingly for low Mach numbers to

predict the skin friction for incompressible flows (as expected). Further experiments run on a square duct reveal

similar results (ref. 8).

Supersonic, adiabatic pipe flow data (ref. 9) were also compared with the present model. Table IV shows
data for four Mach numbers and the corresponding predicted values. Agreement is rather good for all cases.

To fully test the model, not only friction data are needed. Wall and flow temperatures must be known to

compare the model's heat transfer capability. Fortunately, several experiments have been done in this area. The

first is shown in figure 3 (from ref. 10). Note that the Tav/T w ratio of 1 indicates not an adiabatic system but an

isothermal system for that particular location. Table V illustrates the model's capability of predicting flows with

roughness.
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The recovery factor (r = 0.88) has also been used in the Crocco-Busemann relation. The value of the

roughness term was chosen rather arbitrarily because no roughness figures were explicitly given. It was
estimated to be k/D = 0.000095. However, White (ref. 3) suggests that the value chosen represents the point

where roughness begins to play a significant role in heat transfer and may be considered a minimum value.

However, other values of roughness may be more appropriate. Finally, the average Mach number was sonic

(M= 1).

With the ability to model surface roughness, the model may be further compared. By solving the friction

formula for adiabatic, incompressible flows for various roughnesses, the model should reduce to the Colebrook

equation (Moody's chart). Figure 4 compares four roughness plots of the model with the Colebrook equation.

As expected, the model recovered the Colebrook equation for small Mach numbers. In spite of this relatively

good comparison, it is worth noting that the Moody chart is accurate to +_15 percent for design calculations

(ref. 11). Figure 5 is included to show how the model extends the Moody chart to compressible flow for various
Mach numbers.

It is worth noting that figure 5 clearly presents the general trend that for fixed Reynolds numbers increas-

ing Mach number tends to decrease skin friction coefficient values. Compressibility effects on the internal skin
friction coefficient are directly presented in figure 6. Although it is not the intent of this report to discuss the

detailed physics of this trend in any great detail, it is desirable to summarize the basic phenomenon. Schlichting

(ref. 4) notes that for adiabatic, compressible flow the density must decrease strongly near the wall (by constant

pressure and state), thus causing considerable boundary layer thickening. This reduction in the local gradient

apparently reduces the skin friction coefficient. Unfortunately, our understanding of turbulent boundary layers is

still rather phenomenalistic and can offer only limited insight into these problems.

Solving for C I in equation (39) may easily be performed by using various iteration (fixed point) techniques.
A short routine using Newton's method was used in this study.

Overall comparison with experimental data yields no observable general trends of the model that may be

identified as sources of error. It is worth noting though that because the model is based on Prandfl's turbulence

model, the present analysis cannot model the thin laminar sublayer (in fact, it is completely neglected). There is
evidence that at low Reynolds numbers this effect becomes significant (ref. 3). White has demonstrated that for

incompressible flow at Reynolds numbers of approximately 4000 the effect of the laminar sublayer becomes

significant.

SUMMARY OF RESULTS

An analytic skin friction model for compressible, turbulent, internal, fully developed flow involving heat

transfer has been developed by extending the incompressible law-of-the-wall relation to compressible cases. The
formula recovers Prandtl's incompressible law of friction for pipes (within 2 percen0 for incompressible flow.

In addition, the model shows good correlation with the Moody chart for similarly low Mach numbers. The model

also shows good correlation with available data relating heat transfer and skin friction. Assuming the conditions

under which the Reynolds analogy is valid, the skin friction can be directly related to the heat transfer.

RECOMMENDATIONS

In closing, it is worth noting that for these high-speed experiments the local properties (fluid density,

Reynolds number, air speed) are difficult to measure. Often, they can only be estimated. As a result, agreement
with available experiments is encouraging, but the experiments themselves may introduce some uncertainty.
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Further,in contrastto theexperimentalworkdonein theareaof fiat plates,far fewerinternalflow experiments
havebeenperformedto fully testthismodel.It is hopedthatadditionalexperimentationaswell asagreement
withnumericallyimplementedturbulencemodelswill provethismodelto beaccuratefor rapid engineering

estimation purposes despite its simplicity.
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TABLE L--MODEL PREDICTION VERSUS PRANDTL'S LAW

(INCOMPRESSIBLE)

Reynolds

number,
Re

s.oxlo4
1.0xl0 6

2.o,,106
i.o,,1o7

Skin friction

coefficient,

q
Model, Praodfl's

)_ = 4Cf law,

z--4c s

0.0208 0.0209

.0115 .0116

,0102 .0104

.0080 .0081

Relative error,

Model - Prandfl's law

Prandtl's law,

percent

0.48

.86

1.92
1.23

TABLE II.--MODEL PREDICTION VERSUS EXPERIMENTALLY

MEASURED (ref. 6) SKIN FRICTION COEFFICIENT FOR

SMOOTH, ADIABATIC, TWO-DIMENSIONAL

DUCT FLOW

Reynolds
ntnTtber,

Re

9.00x105
1.00xl06
2.00x107

Skin friction coefficient,

.... C_r

Model Experiment

1.50x10 -3 1.80x10 -3
1.30x10 -3 1.30x10 -3

8.00x10 -4 i .00xl0 -3

Relative error,

peroent

16
0

2O

TABLE III.--MODEL PREDICTION

FOR VARIOUS ROUGHNESSES

IN TWO-DIMENSIONAL DUCT

[Reynolds number, 1.0xl06;

Mach number, 3.0.]

Skin friction

coefficient,

cl
0.00190

.00160

.00158

.00156

Relative

roughness,
rdD

0.001

.0001

.00005

.00001
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TABLE IV.--MODEL PREDICTION VERSUS EXPERIMENTALLY

MEASURED (ref. 9) SKIN FRICTION COEFFICIENT

FOR ADIABATIC PIPE FLOW

Reynolds Mach Skin friction coefficient,

number, number. C/
Re M

Model Experiment

8.00x105 2.06 2.75x10 -3 2.80x10 -3

3.80x104 2.g4 4.20x10 -3 3.95x!0 -3

4.50x105 3.14 2.00x10 -3 2.45 x10-3

2.25x105 3.87 2.30x10 -3 2.60×10 -3

Relative

ell'Or,

percent

1.8

6.3

18.4
11.5

TABLE V.---MODEL PREDICTION VERSUS EXPER-

IMENTALLY MEASURED (ref. 10) SKIN

FRICTION FOR ISOTIERMAL PIPE

FLOW WITH ROUGHNESS

Temperature Reynolds
ratio, number,

r._w Re

0.9o9 7.OxlO s

1.oo l.Oxl os

.476 9.0xlO 'l"

.400 l.OxlO 4

Skin friction

coefficient

ratio,

1.227
.960
.875

1.030
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Figure 5.---Skin friction coefficient versus Reynolds number for various Mach numbers and relative roughnesses. (a) Mach 0.1.
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Figure 6._Compressibility effects on skin friction.
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