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Abstract

Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormai-

ization group. For this purpose, an isotropic model is introduced. Scaling exponents are

calculated by forcing the temperature equation so that the temperature variance flux is

constant in the inertial range. Universal amplitudes associated with the scaling laws are

computed by expanding about a logarithmic theory. Connections between this formalism

and the direct interaction approximation are discussed. It is suggested that the Yakhot-

Orszag theory yields a lowest order approximate solution of a regularized direct interaction

approximation which can be corrected by a simple iterative procedure.

I. Introduction

Application of the Kolmogorov scaling theory of hydrodynamic turbulence to Boussi-

nesq turbulence suggests two regimes. The simpler possibility is that the gravitational

coupling can be neglected. Then the temperature is a passive scalar and the velocity and

temperature fluctuations have Kolmogorov spectra

E ,,_ _2/3k-_/_

ET _ Ne-1/3k-S/3

where e is the kinetic energy dissipation rate, ET is the spectrum for mean square temper-

ature fluctuations, and .N is the corresponding dissipation rate. In the passive regime, the

correlation < u_T' > vanishes by symmetry, and the corresponding spectrum EH is zero.



Bolgiano 1 identified the second possibility, that velocity and temperature fluctuations

are determined by N and 9. Then dimensional analysis leads to

E .., g4/SN2/Sk-n/5

EH "" gl/5 Ffs/s k-9/5

ET "_ g-2/5N4/s k-T�5

The velocity spectrum falls off more quickly at small scales than a Kolmogorov spectrum;

this rapid decay was understood to reflect the conversion of kinetic to potential energy

under stable stratification, to which this scaling was assumed to apply exclusively. 2

It has been suggested s that measurements 4 in very high Rayleigh number Rayleigh-

Benaxd convection experiments are consistent with Bolgiano scaling. Although the evi-

dence is not conclusive, this motivates the study of Bolgiano scaling in unstably stratified

flow. L'vov and Fa_ovich have observed 5 that whereas Kolmogorov scaling corresponds to

constant energy flux s, Bolgiano scaling corresponds to constant N, which can be identified 3

with entropy flux. Their analysis also supports the suggestion a'2 that Boussinesq turbu-

lence typically exhibits both regimes, with Bolgiano scaling dominant at large scales and

Kolmogorov scaling dominant at small scales.

Bolgiano scaling will be considered here from the viewpoint of the Yakhot-Orszag

(YO) theory, e It will be shown to arise from forcing of the temperature equation alone.

A similar calculation for MHD has been made by Fournier et aJ. 7 However, in this case

forcing of the magnetic field equation leads to a Koknogorov spectrum for the case of

constant magnetic energy flux. This apparently occurs because the coupling constant is

dimensionless in MHD but dimensional in Boussinesq turbulence.

II. Langevin models for Boussinesq turbulence

The Boussinesq equations in Fourier space are

1 kf ^(-i,,, + uk2) , = ) u (k - + gP,3(k)r(k)

(-iw + _k2)T = -_,k, d@[u,(k - @)T(@) + u,(@)T(]:- @)]

2
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In Eq. (1), the standard notation,

k = (w,k)= (o,,ka,k_,k_)

Pij(k) = 6ij - kikj/k 2

Pi._.(k) = k,_P,,,(k) + k.P,._(k)

is used. The buoyancy term coupling u and T is direction depender/t. However, if Bolgiano

scaling can arise independently of stratification, this dependence should be considered

characteristic of the production mechanism only and as absent or irrelevant in the inertial

range. Then it is not unreasonable to investigate an isotropic theory by replacing T in Eq.

(1) by a convected vector field bi. Then

1 k f u_(k -+ = ) j + 9 Pip(k )bt,

(--iOa + tck2)bi --- 1 f - + Ck- (2)

L'vov s suggests that the locality of inertial range interactions, expressed analytically as

the finiteness of the DIA integral expression for ._ developed later in Sect. III, supports the

possibility of Bolgiano scaling in unstably stratified flow: locality implies that inertial range

scales interact among themselves and not with production range scales. This property of

locality might also be invoked to justify Eq. (2) as a model of Boussinesq turbulence.

Nevertheless, some caution in replacing the Boussinesq equations Eq. (1) by the isotropic

model Eq. (2) is required, because vanishing of the correlation < u_T' > in isotropic

turbulence is a kinematic requirement for Eq. (1), whereas the correlation < u_b i > in

Eq. (2) need not vanish in this case. Accordingly, we leave more complete consideration of

the relation between true Boussinesq turbulence and the isotropic model Eq. (2) for later

investigations.

The direct interaction approximation (DIA) for Boussinesq turbulence has been formu-

lated by Kraichnan s. DIA for Eq. (2) can be written as a system of generalized Langevin

equations 9

ai(k,t) = ds _l(k,_,s)ui(k,s) + f_'(k,t) + gbi(k,t)

_,i(k,t) = ds rlb(k, Ls)bi(k,s) + ds rlb"(k,t,s)ui(k,s) + f_(k,_) (3)
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where the damping functions are defined by

1 fk dp dq P,.m,_(k)Pmrs(p)P,,s(q)G(p,t,s)Q"(q,t,s)_(k,_,,) = _ =p+q

1 fk dp dq k_qzP_(p)Gb(p,_,,)Q_(q,_,,)rtb(k,t,s) = _ --__p+q

I fk dp dq {kpPp,.s(p)G(p,$,s)Qh,.(q,t,s)rtb'(k, t, s) = _: ----P+q

+ k_q_G_<q,_,,)Q_(,,_,,)}

(4)

and the force correlations are

1 fk dp dq Pi,,_,_(k)Pj_,(k)P,_(p)P,_.(q)Q=(p, Ls)Q"(q,t,s)< f?f; > ---_ 4 __--pWq

1 fk dp dq P_(k)kp {p_p(p)f_(,,_,8)Q_j(q,t,s)

+ p,_p(q)Q_j(p,t,s)Q'(q,t,s)}

< f_bf_b > = 41Jfk--p+q dp dq {kpklPlp(p)Q'_(p, Ls)Qb(q,t,s)

+ k,k,Q_(p.,.,)Q_.(q.,.,)}

The scalar Green's functions G and G b ill Eq. (4) axe defined as is usual in DIA by

G

1
Gb _ 6bi 6..

In these equations, the correlation functions are defined by

< ui(t)uj(s ) > = f dp Qi_(p, Ls)

< ui(t)bj(s ) > = f dp Qih(p,t,*)

< bi(t)bj(s) > = I dp Qib(p,t,s)

Isotropy implies that

Qij(p, ,s) = QU(p,t,s)Pij(p)

Qbj(p,t,s) = Qb(p, Ls)6 0

(5)
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The YO theory can be understood as a solution of these equations in a special limiting

case. First, the geometric coefl_cients are all evaluated in the distant interaction limit

kip and k/q _ O. Second, the triangle integrals are all regularized by restricting the

integration to the region in which either p > k or q > k. Finally, the time dependence

is also evaluated in the distant interaction limit. Namely, assuming arbitrary scaling in

the inertial range G(p,t, s) -- G(ap_(t - s)) for some positive exponent r and suitable

dimensional parameter a, the similarity form for G satisfies

a(o) = 1

g(r) < 1 for r > 0

f0 G( )gr < Oo

therefore

fG(f(t- s)) ~ s) for

by standard properties 1° of delta functions. In Eqs. (4) and (5), this same argument

is applied to products of Green's functions and time correlation functions in the distant

interaction limit. Therefore, in this limit, the damping is Markovian and the forcing is

white noise in time. Fluctuation dissipation relations relating the correlation and response

functions are valid in this limit.

In Bolgiano scaling, Eq. (5) implies that the forcings satisfy the scaling relations

< fufu > ~ <uibi > ~ k -19/s

< fbfb > ,.., k-3

(6)

The velocity force spectrum is steeper than the k -s force corresponding to a Kolmogorov

spectrum; 5 accordingly, Kolmogorov scaling will apply at sufficiently small scales. The

Bolgiano scale ks can then be understood as the scale beyond which Kolmogorov forcing

dominates the velocity equation. Thus,

ekes ~ !18/5 _3/S kB19/5

Since in view of Eq. (6) the DIA velocity force scales like the cross correlation in

Bolgiano scaling, it is reasonable to assume that the forcing of the velocity equation is

5



due entirely to the coupling to the b field. With these assumptions, DIA reduces to the

"correspondence principle" of the Yakhot-Orszag theory s for Bolgiano scaling in Boussinesq

turbulence, namely that the Bolgiano scaling regime is described by the noninear Langevin

model

1 k f
(-i_, b']C2)Ui+

l'k /(-_ + _k_)b+= -5,. d_[..(k - _)b+(_)+ _.(_)b+(k- _)] - _k_., +/,

in which the force correlation is

(7)

</,+(k)/.+(k')> = D,_Ck+ k'),k_,+-" (s)

and an arbitrary scaling exponent replaces the value y = d appropriate for Bolgiano

scaling. 6

The additional transport coefficient 3' corresponds to the damping function r/_" in

the DIA Langevin model. This added term does not affect the RG calculations of v and

to. The physical case, defined so that the stirring coefficient D has the same units as

iV, corresponds to y = d and e = 8. Although the damping terms have been replaced

by the original nonlinear terms of the equations of motion, their effect will be evaluated

perturbatively in the same "one loop" approximation used in the DIA Eq. (4).

Suppose that this procedure were applied, not to the model equation (2) for the vector

field b, but to the original equation (1) for T. Then it is easy to check that the corrections

to viscosity and diffusivity would be tensors. However, the consistency of this calculation

is uncertain. For as inspection of the DIA Langevin equations shows, anisotropic damping

and correlations must correspond to an anisotropic force correlation with nonzero velocity

and cross correlations. Only in the case of an isotropic theory do symmetry conditions

dictate the form of the force correlation. But it is also easily verified that the isotropic

part of the viscosity and diffusivity corrections computed in this manner would coincide

with the results of the present calculation.

The RG calculations follow as in Ref. 6. They lead to recurrences

dv

dk 2-- g2Dk-+-av-4-d(d + 2)[A(a)(d2 - d + 6-e) + B(a) - C(a)]
(9)

(10)dtc = l (l l)g2Dk-+-_t,,-4D(a)-g£

6



in which
_=8+y-d

a --" /_/v

D = 2_rDSa

As in the YO analysis of the passive scalar, the coefficients A,..., D are rational ftmctions

of a:

a+2

A(a) = 4a(a + 1) 2

a 2 + 3a + 4

B(a) = 4a(a + 1) 3

7a 2 + 21a + 12

C(a) = 4a(a + 1) 3

2a+1

D(a) = 4a2( a + 1) 2

(11)

where

A = A(a)(: - d + 6)+ B(a) - C(a)

The quantity a, an inverse Prandtl number, is evaluated by assuming it is scale independent

and can be evaluated by setting the viscosity r, proportional to the conductivity t¢ in the

inertial range. This leads to a quartic equation for a

3a 4 + 9a 3 - 2a 2 - 15a- 5 = 0 (12)

Solving the recurrence relation for v when d = 3,

_(v51 _ v_) - 4,1 .to?--;g2D[A(a)(d2 - d + 6 - _) + B(a) - C(a)](k-" - k_')

The initial conditions are u = uB when k = kB correspond to the highest wavenumber

governed by Bolgiano scaling. The effective viscosity us will be given by Kolmogorov

scaling and not in general by the molecular viscosity.

In the YO theory, an expansion is made about the logarithmic theory e = 0 recognizing

that evaluation of integrals beyond the one loop level will introduce further corrections of

order e'_ with n > 1 to the constants. At lowest order, consistency demands that all

such corrections be dropped, including those already computed in the present one loop

approximation. Dropping these corrections and setting _ = 8,

1 [_ ]a/Sk_S/5v = _ g2AD



which has only one positive root

Then from Eq.,

.

a = 1.291 (13)

A = .7929

It must be stressed that in this procedure, e {_ never set to any value other than

These results could also be derived directly from the simplified DIA Langevin model

without introducing recurrence relations following Woodruff. 11 By regularizing the triangle

integrals, crossover to a dominant sweeping interaction 11 when e -- 7 is suppressed.

The inverse Prandtl number of Eq. (13) is very close to the value 1.3929 obtained

for forced convection by Yakhot and Orszag 6 (compare also ReL 7). The close proximity

of these numbers is consistent with a common assumption 12 that the turbulent Prandtl

number is independent of Richardson number in the atmospheric surface layer. Although

experimental evidence does not support this assumption unambiguously, m the theoretical

value of Eq. (13) is within the range 1.00 < a < 1.43 observed in some recent measurements

of buoyant plumes, is

Spectra are defined as usual by

= Q.(p)

lj /2Eb(p)- _ dp dw Q_i(P)

and evaluated at lowest order in perturbation theory as

Eu -- d-2 1 f dp f__ d_ [ G(15)[_l Gb(i_)12 g2Dp-"

8-- 2a(a +

J/?
4 1).(_ A)_2/sg_/SD3/Sp_,/s- 2a(a +

Eb -- _ dp dw I Gb(_)I_ Dp-"

_12 -1/5 -_/5 4/5 -7/5
-- a(3 A) g D p
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Then

where

v(k) = a_,g2/SD 1/sk -s/5

E,,(k) = a,,g4/SD_/Sk-aa/s

Eh(k) = ahgl/SDS/Sk -9Is

Eb(k) = abg-2/SD*/Sk -7Is

(14)

a_ = 0.440

a. = 1.310

ah = 0.576

ab = 0.679

Introducing an inverse integral scale ky so that the energy is contained entirely in the

inertial range kf < k < oo, the single point turbulence quantities are

1 5 _e/s
K = _ < upup > = -_a_,g4/SD2/Sk._

1H = -_ < uwbp > = ahgl/SDS/Sk-/4/5 (15)

C = -2 < bpb, > = a,g-2/SD4/Sk-/2/s

= = .,gl/SD /Ski sis

In these equations, corrections due to a Kolmogorov regime at small scales have been

ignored.

III. Elimination of the force amplitude

The expressions for spectra and single point turbulence quantities developed above

all contain the quantity D. In the YO theory, this quantity is expressed in terms of the

dissipation rate/_" through the DIA inertial range energy balance, 14

0 = ik, / dpdq < [up(p,t)bi(q,t) + up(q, t)bi(p, t)] bi(-k, t) >
Jk =p+q

9



< =,(_)b_(_)>

< =_(,)b_(_)> =

for t > s. The result is

Assu_ng a steady state, let

S(k,p,q) = ik_ < [up(p,t)bi(q,t) + uAq, t)bi(p,t)]bi(-k,_) >

Integrating the DIA energy balance over all time separations,

1

S(k, p, q) = _ { 2®(k,p, q)kpPpmn(p)P,_i(k)P,_i(q)Qh(k)Qh(q)

-4- ®(k,p,q)[kpqtPu(k)Ppi(P)Qh(k)Qh(P) - kpkIPpi(P)Pu(q)Qh(p)Qh(q)] (16)

+ 6)(k,p,q)[kpqlPlp(P)6ii(k)Q_'(P)Qb(k) - kpktPpl(p)6ii(q)Q_'(p)Qb(q)] }

+ (p,q)

where (p, q) denotes interchange of wavenumbers p and q and the time scale _) is evaluated

using fluctuation dissipation relations, valid in the present case of Markovian damping and

white noise forcing,

./ dsG(k,t,s) < ui(s)bj(s) >

f dsGb(k,_,s)< _,_(,)b_(_)>

Following Kraichnan, 14

da G"(p,a)Gb(k,a)Gb(q,_)

gT= f<ko dk fp,q>_odp dq S(k,p, q) _ f_o>k>ko dk fp,q<kodp dq S(k,p,q)__ _ (17)

must be finite and independent of k0 when inertial range scalings are substituted in S. The

triangle condition k = p + q is understood in the integrals. Convergence must be checked

in the cases p _ 0 and q _ O. We find

/ dq S(k, p, q)limq--.o

therefore

=O(q4)Q(q)

fq S(k, p, q) _ f dq q2-_, < ov

10



becausein all integrals, ,1, < 3.

To evaluate the flux integral, define the quantity T(k,p, q) by

[ dp dq T(k,p,q)= [ dp dq S(k,p,q)
d Jk =p+q

The scMmgs are such that

T(.Xk, ,Xp, ,Xq) = .X-aT( k, p, q)

a result equivalent to the choice of a k -3 force. This implies is that the inertial range trans-

fer does not depend on the wavenumber k0 and permits the transfer integral to be reduced

to a double integral over a finite region following Kraichnan. 14 Numerical integration of

Eqs. (16)-(17) leads to

/_"= 4.01D

This result can be used following YO to eliminate the force amplitude D from Eq.

(14) for the spectra and Eq. (15) for single point quantities. The results for the scale

dependent viscosity and spectra are

v(k) = 0.33392/SN "l/sk -s/s

E=(k) = O.75294/sN 2/sk -al/s

Eh(k) = 0.25091/SN3/S k -9/s

Eb(k) = 0.3369-2/5F1 a/s k -v/5

(18)

For the single point turbulence quantities:

K = 0.627g41S[l'21Sk-y 6Is

1t = 0.313galS NSlS k-f 415

C = 0.8409-215N 415 k-_ _15

(19)

These results lead to a formula for the turbulent viscosity in terms of single point

quantities,

r'T = 0.633 ___C (20)

11



which can be applied in transport models. In problems in which the heat transfer H is

constant, the relations

H 2 = 0.186KC

- 12.8gK-2H s = 1.03gCS/2K-1/2

may also be useful.

IV. The transport coefficient 7

The transport coefficient 7 can be computed after v and _ because it does not enter

the recurrence relations for these quantities. We find

d7 1 gDp a-1 1 7a 2 + 4a + 1

_pp = 4 vsps+v d(d + 2) { 4a2(a + 1) _

1 [7a 2 + 4a + 1 - (3a + 1)(a + 1)(6 + y)]
+ 4a2(a + 1) 3

3a+l 1 2

+d4a2(a + 1) + 2a(a + 1) 2 + a(a + 1) 3

i 1

2a(a + 1) 3 [(a + 1)(y + 6) - 2] + (d + 2)2a( a + 1) 2 }

Note that 7 does not scale like v and _; instead, using v ,-_ p-,/5, we find

3' "_ pa,/s-(,-_)

indicating that 7 is irrelevant for e < 5. Accordingly, to evaluate the amplitude for 7, it is

appropriate to consider v and a as known, but to expand otherwise about e = 5, or y = 0.

This procedure leads to

7 = 0.00263g -1/5_/5 k-S/s

It appears that this quantity can be neglected for practical purposes.

V. Iterative solution of the DIA Langevin equations

Let us compare the present calculation using the YO theory with the original DIA

Langevin equation. The YO "correspondence principle" can readily be understood in terms

of this Langevin model. The necessity of a stirring force is immediate from DIA, and the

12



k -s scaling is equivalent to Orszag's transparency condition 15 on the inertial range. The

YO theory begins by generalizing this model: the DIA response equation is satisfied by

a family of scaling solutions depending on the force scaling exponent y. Then the theory

computes perturbatively about the logarithmic (Gaussian, asymptotically free) theory in

which c = 8 + y - d = 0. DIA does not suggest this procedure since only e = 8 is consistent

with the DIA response equation. However, ff it is agreed that this procedure is appropriate,

the calculation of amplitudes in the physical case is consistent: in this calculation, e is never

set to any value other than 8. The numerical accuracy of this procedure remains uncertain.

The stirring force amplitude is eliminated by appeal to the full DIA response equation

which is neither regularized nor evaluated in the distant interaction limit. However, even

this calculation is incomplete because the time dependence has been calculated assuming

Markovian damping acting against a white noise in time forcing. Finally, the viewpoint

of DIA, the correspondence principle for Boussinesq turbulence was incomplete because

it assumed that f_' could be neglected in comparison to < ub >. The consistency of this

assumption has not been demonstrated.

All of these considerations suggest that we have only computed a first approximation

to DIA. In abbreviated notation, this solution is

G_(k,_) ~

a_(k,_) ~

O_(k,_) ~

O_(k,_)~

O_(k,_)~

Q_(k,_)~

exp(-,rle2/5)

exp(-o'k 2/5)

k-21/SGl(k,o .)

k-19/SGl(k,o) for _r > 0

k-_9/_a_(k,,_)for,_< 0

k-17/sG_(k,_)

where time stationarity has been assumed and _r = t - s. The DIA Langevin model can

13



be used to generate corrected damping and forcing:

f

rll(k,o') '_ J GIQ'_

... G1Q a

,_'(k,a) _ f GaQ h

F_" =< .f_ f_ > ,.-, Q1Q1

F_b < ,c_,¢_ ,, h= Ja_l >"_Q1Q1

F:_=< S_S_> ~ Q_Q_

With these corrected dampings and forcings, new response functions and correlation func-

can be calculated assuming that the damping and forcing aretions G2, G_, Q_, Qzh, Q_

known:

(_2 +rh*G2 =0

O_+ ,_ • a_ + _ • a_ = 0

0'_+ 71*Q'_= a_ • FT'

This iterative procedure answers the objections raised above. At the second itera-"

tion, the distant interaction limit will be corrected,the Markovian time dependence will be

modified (hence the fluctuation dissipation relation will not be satisfied) and the complete

DIA forcing will be computed. Regularization of the response equation cannot be avoided

in this kind of theory. This procedure introduces an arbitrary parameter into the theory

since we can also regularize by requiring p > ak for any positive constant a. is We have

followed YO by setting a = 1.

APPENDIX: Integrals in calculation of renormalized transport coefficients

The following notation is used:

a(_,)= (-i,o + vk_)-_

a_(k)= (-i., + ,_k")-_

14



Viscosity correctionsare calculated from

k2dV -dp 21ipi'='_(k) fl d_ / dp

(_l iG( k -/_)Prars (k - p)g2 psn(p)G(_a)G(__)Gb(_)Gb(__)p-V

(-1xiG(_)Pnrs(p)g2Pms(k - p)G(15 - k)G(_: - _)Gb(_- k)Gb(k - ifi) I k - p I-v

where _ dp denotes integration over a d - 1 dimensional sphere of radius p. The integrals

are evaluated in the limit k/p --* O. The frequency integrations in this limit are

2_ 1

G(k -_)G(_)G(-_)Gb(_)Gb(-_) - u4pS 4a(a + 1) 3
d_

{(a + 21(a + 1 / + k_,p_,p-2(a 2 + 3a + 21}

X

and the second frequency integral can be found by replacing p by k - p in this result.

k 2dt¢ 1 k

Similarly,

[ G(_- k)121 Gb(p- [e)12 Gb(p)pmD_mp I k- p I-y

I G(_) 121Gb(_)I s Gb(k -/3)Dp -_m

The frequency integrals are evaluated by interchanging v and s, or equivalently by replacing

a by 1/a. Also,

k 2d7 = _1 k
dp _ ,_dw/dp

G($- k) I Gb($ - _) Is Gb(_)aDp,_Pp_(k- p) lk- p I-_

A- G(_) ] Cb(_) 12 Gb(k - _)gD(km - pm)Ppi(p)p -v

+ G(k - _)G(-_) I Gb(_) [s gDPpmn(k- p)P,,i(p)p -v

+ G(_)G(_- k) lG(_- k)15 gDPp_,_(p)P,_i(p - k) lp- k 1-v

In evaluating products of projection operators in the distant interaction limit, the first

order Taylor series

Pii(p - k) = Pij(p) + p-2k_p_ij(p) +-.-

is useful.
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