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ABSTRACT 

This is the final report of research project NAS8-3913 1 #22 sponsored by NASA's George 

C. Marshall Space Flight Center (MSFC) and carried out by the Civil Engineering 

Department of Auburn University (Auburn, Alabama) and personnel of MSFC. The 

objective of this study was to identifjr the main design parameters contributing to the 

loosening of bolts due to vibration and to identifjr their relative importance and degree of 

contribution to bolt loosening. Vibration testing was conducted on a shaketable with a 

controlled-random input in the dynamic testing laboratory of the Structural Test Division 

of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount 

of time and a percentage of pre-load loss was measured. Each specimen tested 

implemented some combination of eleven design parameters as dictated by the design of 

experiment methodology employed. The eleven design parameters were: bolt size 

(diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip 

length, thread pitch, lubrication between mating materials, class of fit, joint configuration, 

and mass of configuration. These parameters were chosen for this experiment because 

they are believed to be the design parameters having the greatest impact on bolt loosening. 

Two values of each design parameter were used and each combination of parameters 

tested was subjected to two different directions of vibration and two different g-levels of 

vibration. One replication was made for each test to gain some indication of experimental 

error and repeatability and to give some degree of statistical credibility to the data, 

resulting in a total of 96 tests being performed. The results of the investigation indicated 

that nut locking devices, joint configuration, fastener size, and mass of configuration were 

significant in bolt loosening due to vibration. The results of this test can be utilized to 

firther research the complex problem of bolt loosening due to vibration. 



MSFC PERSPECTIVE 

PROJECT DESCRIPTION 

Space Shuttle Payloads managed or developed at NASA's Marshall Space Flight Center 

(MSFC) are required to adhere to MSFC-STD-561, Threaded Fasteners, Securing of 

Safety Critical Flight Hardware Structure Used on Shuttle Payloads and Experiments. 

The requirements of MSFC-STD-561 are to lockwire or cotter pin safety critical flight 

hardware components or conduct vibration or acoustic tests to demonstrate that locking is 

not required. If lockwire or cotter pins are not used and testing is not performed then a 

waiver must be obtained from the responsible organization. However, applications arise 

where lockwiring or cotter pinning are not possible and resources and manpower are not 

available to conduct vibration tests. An analytical and experimental investigation was 
conducted to determine a method for predicting loosening in bolted joints so Space 

Shuttle payloads can use alternate locking devices without being subjected to vibration or 

acoustic testing. 

PROJECT OBJECTIVES 

Safety critical fight hardware, designed or managed by MSFC, requires positive locking 

devices such as cotter pins or lockwire or a vibration test to ver@ positive locking is not 

required. The objective of this research was to identi@ the main factors that cause bolt 

loosening due to vibrations, and then to experimentally test these factors in a vibration 

environment to access their relative importance to bolt loosening. 

PROJECT RESULTS 

Analysis of the data fiom the program test matrix indicates that a locking device, the joint 

configuration, fastener size, and mass of the configuration are important factors in 

preventing fasteners from loosening for the parameters investigated in this study. This 

task was performed based on the fundamental concepts for the design of experiments and 

on an effective and efficient orthogonal array or fiactional factorial methodology. One 

objective of the design of experiments approach is to have a good method of measuring 

the output characteristic. The output sought for this experiment was the amount of 



preload, or tension, lost in the bolt after being vibrated. The measurement methods used - 
breakaway torque and change in bolt length measured with hand held micrometers - are 

suspect in obtaining accurate tension indication. 

PROJECT OBSERVATION 

The objective of this study was to investigate the effect of vibration on the loosening of 

fasteners. To achieve this goal, loosening must occur. However, only one test 

configuration loosened. Possible explanations for this was that the bolts were over- 

torqued and a relatively high coefficient of friction lubrication was used. The design of 

experiments and orthogonal array methodology used is sound and should be considered 

for the further loosening investigations. 

MSFC APPLICATIONS 

The information and experience gained from this experiment can be utilized in further 

fastener loosening investigations. 

RECOMMENDATIONS 

Means other than lochr ing  or cotter pinning fasteners to prevent loosening remains an 

objective. Future endeavors to obtain an understanding of the loosening phenomena 

include the development of a test fixture that will cause loosening and a better method of 

detecting the preload in the bolt. 

Frank Thomas, Project Manager 

Special Projects Division 

Marshall Space Flight Center, NASA 
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I. INTRODUCTION 

1 . 1  General Statement of the Problem 

The threaded fastener, or bolt, is one of the most common connecting devices. 

Used in a wide range of applications, one would expect that the knowledge of how a bolt 

performs under certain loading conditions would be well known. While the behavior of 

bolts under static tensile and shear forces is fairly well understood, their behavior under 

dynamic loads, such as vibration, is not. Many theories have been developed in an attempt 

to describe the way that a bolt and nut interact under vibratory loads. While these theories 

have proven helphl in understanding the bolthut interaction, none have proven adequate 

in predicting bolt loosening. In order to predict bolt loosening, it is important to first 

identifjl the parameters that contribute to bolt loosening so they can be quantified. The 

desire to identifjl the primary parameters that contribute to bolt loosening was the impetus 

for this study. 

1.2 Obiectives 

The work presented in this report is directed toward a long range goal of 

prediction of bolt loosening. Once the main parameters that contribute to bolt loosening 

are identified, they can be quantified and, if successll, an empirical equation can be 

developed to predict bolt loosening. The major emphasis of the work presented herein 
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was the identification of the main parameters contributing to bolt loosening and to identify 

their relative importance and degree of contribution to bolt loosening. 

1.3 Scoue 

The entire range of all parameters contributing to bolt loosening could not be 

explored in this experiment. Through literature review, discussions and meetings with 

select personnel of the Marshall Space Flight Center (MSFC), and engineering judgment 

the main parameters deemed suspect in bolt loosening were identihi. These parameters 

were investigated in an experimental testing program employing a Taguchi Method design 

of experiment. The program was executed by the author and testing personnel of the 

Structural Testing Laboratory at MSFC. 

The experimental work was l i i ted to a preliminary testing phase to finalize 

vibratory loading modes and levels and testing procedures. The final experimental 

programlmatrix consisted of testing 1 1 bolt design parameters in combinations dictated by 

the design of experiment methodology employed. This resulted in 48 different tests. One 

replication was made for each test to give some measure of repeatability and experimental 

error. This resulted in a total of 96 tests conducted. 

The study includes a general background and literature review of the problems of 

bolt loosening. Theoretical considerations for bolthut interaction and vibrational loads on 

fasteners are presented in Chapter 111. A discussion of design of experiment techniques 

and Taguchi methods, the derivation of the test matrix, and a description of the 

experiment are presented in Chapter IV. In Chapter V, data analysis and a presentation of 

the results of the experiment are presented. Conclusions and recommendations are 

presented in Chapter VI. 



11. BACKGRO'LTND AND LITERATURE REVIEW 

A bolted joint must maintain a minimum clamping force in order to resist 

loosening. The resulting fictional forces between the surfaces of the bolt, nut, and mating 

materials must be greater than any tangential surface forces that might act to oppose them. 

In order to do this, a complex set of design parameters involving the characteristics of the 

bolt, nut, and mating materials must be arranged such that the resistance to loosening is 

optimized. 

At the present time, what is known about how a bolt and nut interact under 

vibrational load is based on theoretical models and some experimental data. The following 

literature review is directed toward what is currently known about bolt loosening as well 

as the mechanics of threaded fasteners. 

2.2 Literature Review 

Junker (1 8) indicates that aside from fatigue failure, self-loosening is the primary 

contributor to failure of bolted joints that are dynamically loaded. This loosening is the 

result of relative movement between the threads of the bolt and nut after the force of 

fiction between these two surfaces has been overcome. In order to understand this 

concept, the threads of the bolt are viewed as an inclined plane and the bolt is viewed as a 

mass resting on the inclined plane, as shown in Fig. 2.1. The mass will remain at rest as 
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long as the force Q is greater than zero. If the inclined plane is vibrated, the mass will 

move as soon as the inertial force of the mass exceeds the fictional forces acting against 

the mass. While this is a simplified explanation of how the bolt and nut interact, it is 

sufficient in explaining the concept of self-loosening. Junker indicates that transverse 

vibration (vibration transverse to the axis of the bolt) is the most severe loading condition 

to induce bolt self-loosening. For axially loaded bolts, the primary contributor to self- 

loosening is the contraction of the bolt due to tensile forces while at the same time the 

dilation of the nut walls, as shown in Fig. 2.2. Junker mentions the following parameters 

as pertinent to bolt loosening: length of bolt, vibration endurance (point at which loss of 

pre-load is zero), hardness of mating materials, thread tolerance, thread pitch, and bolt 

reuse. 

Goodier, et al. (12) indicates that the loosening of the threaded fastenerhut 

combination is the product of simple fluctuations of tension. When the load is increased, 

the threads of the bolt move radially inward and the threads of the nut move radially 

outward. The pull of the bolt acting in the direction of the threads causes the bolt to 

rotate. This theorylmodel of how loosening occurs during dynamic loading of threaded 

fasteners is helpfbl in understanding why some parameters, such as bolt diameter and 

thread pitch, contribute to loosening more than other parameters. 

Finkelston (9) reiterates that the transverse direction is the most severe loading 

direction to cause bolt loosening. Some methods which he mentioned that would increase 

resistance to loosening are: 

1) Increase fiiction in the joint by increasing the pre-load or the number of bolts in 

the joint. 

2) Design mating materials with minimal or no clearance. 

3) Use fasteners that will retard loosening. 
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Finkelston found several important variables affecting a fasteners ability to retain pre-load 

while under vibratory loads. These are listed below in his order of increasing importance: 

1) Amplitude and frequency of dynamic motion: Amplitude and frequency of 

forces applied to a joint greatly effect the dynamic motion of the joint, which in turn 

causes relative motion within the joint. 

2) Thread Pitch: The internal loosening torque in a bolted joint is directly 

proportional to the helix angle of the threads on the bolt. The larger the helix angle 

(coarse-pitch thread) the less vibration resistance is provided due to the larger internal 

torque that is generated. Internal torque is increased by a large helix angle because the 

thread angle is steeper. This causes the component of the force that would cause 

loosening, shown in Fig. 2.3, to be increased. Results from testing show that a 

fine-pitched locknut endures twice the cycles of vibration than does a corresponding 

coarse-pitched locknut, provided all other conditions are the same. 

3) Initial pre-load: Vibration resistance is achieved by increasing the pre-load, 

thereby increasing the friction between mating materials. 

4) Bearing surface conditions: Hardness and roughness of the mating materials as 

well as the thread surfaces and contact surfaces of the bolt can all influence the loosening 

of bolted joints. To minimize preload loss, the hardness of the mating materials and the 

bearing area of the fastener can be optimized. Some degree of embedding can take place 

statically and can be worsened by vibration which can cause plastic flow of the joint 

surface. This embedding causes loss of preload and is usually experienced within the first 

ten cycles of vibratory loading. 

Crispell (8) indicates that the diameter of the fastener and method of manufacturing are 

important factors in fatigue strength of threaded fasteners. Fatigue endurance diminishes 

with increasing diameter and this is believed to be attributable to the method in which the 
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Figure 2.3 Loading Component to Cause Loosening (2) 

Figure 2 4 Inertial Loading (Shear Due to Bending) (19) 
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threads of the fastener are formed. Natural deformities in the material used can promote 

deformation by slip between the bolt and nut. Stress concentrations that reduce fatigue 

life are a result of these deformities. With a large diameter bolt, there is more surface area 

that could possibly have these stress concentration points. Residual compressive stresses 

are induced from rolling the threads in the manufacturing process. These stresses enhance 

fatigue resistance. However, if the bolt is heat treated, these stresses are relieved and any 

advantage in fatigue resistance that is gained by rolling the threads would be lost. 

Therefore, the most fatigue resistant fastener can be achieved by rolling the threads after 

heat treatment. Closer tolerances can also be achieved fiom rolling the threads. 

Baubles, et al. (2) demonstrated that the nut has a preferred direction of rotation 

when it is subjected to vibration. Usually, this preferred direction of rotation is to loosen 

because this is the path of least resistance. Resonant frequencies may be excited by 

external forces which cause vibrations that could promote loosening. The frequency of 

the vibrating force is noted as an insignificant factor in bolt loosening. However, 

frequency does affect time of loosening which indicates that bolt loosening occurs as a 

result of induced oscillation of the parts in the joint at their natural frequencies. Also, 

amplitude of the vibration is indicated as an insignificant factor in bolt loosening. Baubles 

found that an increase in bolt length yielded an increase in vibration life. Other factors that 

were found to be important to bolt loosening when a non self-locking nut was used were 

bolt prestress and seating torque. Retaining torque can be held constant by the use of a 

castellated nut and cotter pin. A variety of locknuts can also be used to maintain a 

retaining torque in the event of prestress loss. Self locking nuts are categorized as nylon 

insert, aircraft quality all-metal, and commercial all-metal. Testing shows that the aircraft 
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quality nuts were more resilient in resisting loosening than were the commercial nuts. 

Threshold torque, which is the minimum torque required to loosen the nut, was low for 

the nylon insert nut compared to the other two nut types. 

Saur, et al. (23) found that the loosening effect of vibratory loading is large 

initially, but diminishes rapidly as the number of load cycles increases. Saur also notes that 

the condition of contact surfaces is an important parameter in bolt loosening. Previously 

used nuts were shown to be beneficial in reducing loosening. When the contact surfaces 

were cleaned and smoothed, the rate of loosening changed more abruptly than when the 

surfaces were not treated. No loosening was experienced after 4000 cycles. Saur 

recommends the use of previously used mating surfaces to reduce loosening. Also 

recommended is cleaning and smoothing the mating surfaces prior to use as well as the use 

of bolts that have smoother and more regular surfaces due to the method of 

manufacturing. These methods allow more surface contact between mating surfaces and 

thus increases the coefficient of friction. Saur indicated that the alignment of the hole in 

which the bolt is inserted, is of little importance. Saur found that for a given load case, the 

amount of loosening decreased with an increase of preload. This indicates the importance 

of keeping the dynamic-static load ratio small. Saur also notes that if a small amount of 

loosening occurs in a bolted connection, this loosening could be compounded by load 

relaxation, i.e., the dynarnic-static load ratio would increase fbrther promoting loosening. 

Negligible amounts of load relaxation occurs for dynamic-static load ratios of 0.8 and 

below. 

Brenner (3) indicates that the most severe vibration condition is experienced when 

the system goes into resonance. He recommends avoidance of resonant vibrations. 

Haviland (13) indicates that the torque applied in order to tighten a bolt causes the 

distance between the bottom of the bolt head and the top of the nut to decrease. This will 
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continue until torsional equilibrium is reached between the torsional resistances caused by 

frictional forces under the bolt head and on the bolt threads. Both of these are fbnctions 

of the bolt tension. One structure that Haviland tested was a simple cantilever composed 

of two steel blades bolted together. The structure was subjected to a 10-g load at 20 to 

400 Hz which caused first mode bending and loosening within 100 to 200 cycles (5 to 10 

seconds). Haviland recommends using liquid threadlock to fill the voids between threads 

to prevent thread movement, thus preventing loosening. 

Chapman, et al. (5) found that the clamping force in a bolt (preload) is 

proportional to the wrenching torque applied to the head of the bolt. This relationship is 

highly dependent on the fiction between the bolt and mating parts. Chapman also notes 

that when the wrenching torque is removed, the "windupt' in the shank of the bolt will 

cause the head to twist back minutely until the friction under the bolt head is in equilibrium 

with the shank torque. This will cause an approximate 20 to 30 percent loss of shank 

torque, thus causing a reduction in preload. Chapman shows that a bolt that has been 

tightened to its yield point can carry higher work loads prior to the joint opening, thus 

increasing the fatigue strength of the joint because fatigue failure occurs mainly when the 

joint opens. 

Holmes (16) indicates that when a nut is torqued, a portion of the energy required 

to tighten the assembly is stored as potential energy. The fiction between the thread 

flanks prevent the nut from unscrewing and returning to a position of rest. Once 

movement occurs in the threads, the friction force between them becomes increasingly 

harder to maintain. To prevent loosening; Holmes recommends fine threaded bolts; 

especially when transverse forces are expected. An improved stress distribution along the 

length of the thread engagement is also favorable to prevent loosening. 
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Clark (6) found that the breakaway torque was a good measure of the self-locking 

characteristics of the bolted joint as well as the work done to remove the bolt. 

Kerley (19) used a cantilever configuration similar to Haviland (13) to analyze and 

test the loosening of threaded fasteners under dynamic loading. This configuration 

introduced shear loadings on the bolt due to bending induced by the beam inertial forces as 

indicated in Fig. 2.4. He explored several parameters that are believed to influence bolt 

loosening. Vibration direction, lubrication on the threads, type of thread locking device 

used, embedding of the nut or bolt head into the mating materials, load distribution on 

threads, loading history of the bolt and nut, size of the bolt and nut, and geometry of the 

threads are parameters which were explored. Some of the primary results from Kerley's 

testing as reported in Ref.(l9) and as reported in telephone conversations with Kerley are 

as follows: 

1. Resonant sine and random vibration loadings were used and resonant sine loadings 

caused the bolts to loosen more rapidly. 

2 All bolts tested were 114" diameter and high quality steel (l20ksi r 9 r 16Oksi). 

At preload levels of YzPy < Pp < Py, bolt loosening was rather insensitive to the 

bolt preload. 

3.  All bolts/threads/nuts were lubricated as were the washers and other mating 

surfaces (0.08 < ps < 0.15). Under these conditions standard nuts loosened in a 

reasonable period of vibration loading, whereas no loosening of locknuts occurred. 

4. When a bolt begins to loosen in a resonant sine loading test, it can be easily 

detected by monitoring the vibrator power input requirement. 

5. When bolt loosening begins, it loosens completely in a short period of time, i.e., 

the loosening occurs quickly. 
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Additionally, Kerley indicated that researchers in Japan have done some vibration testing 

and found that if the thread angle 2 B(see Fig. 3.1) is lowered to around 50 - 55 degrees, 

then regular nuts will not loosen. 

This chapter has reported on the literature pertaining to what is known about how 

threaded fasteners behave under vibratory loadings. Whereas a significant amount of 

work has been done on this topic, and has led to valuable contributions; there are still 

many questions about the loosening of bolts due to vibrations which remain unanswered. 



111. THEORETICAL CONSIDERATIONS 

3.1 General 

The previous chapter presented a brief review of the state-of-the-art regarding the 

loosening of bolts. In this chapter, a more detailed explanation of the mechanics of 

threaded fasteners is provided, along with a discussion of the effects of vibrational 

loadings on threaded fasteners. Lastly, the primary design and loading parameters 

affecting bolt loosening are listed and briefly discussed fiom a theoretical perspective. 

3.2 Threaded Fastener Nomenclature and Behavior 

The nomenclature of bolt threads is illustrated in Fig. 3.1. In order to understand 

how a threaded fastener will behave in a given situation, it is important to understand the 

mechanics of the fastener. Each element of the bolt and nut will be analyzed in order to 

better understand how they interact when under different loading cases. 

The clamping force in a bolted joint is a summation of tensile forces within the bolt 

and fnction forces generated between all parts in contact within that particular joint. 

These contact points, illustrated in Fig. 3.2, are between the head of the bolt and mating 

material, the threads of the bolt and nut, and the nut and mating materials. When the bolt 

is tightened, the distance between the bolt and nut decreases. When the tightening torque 

meets resistance from the clamped mating materials, a friction force is created. As hrther 



Major diameter d 
Mean diameter dm 
Minor diameter d, 

p T  Pitch p 

5" chamfer 

Root-' / 
Crest "r*Thread angle, 28 

Figure 3 .1  Nomenclature of Bolt Threads (24). 
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Figure 3.2 Contact Points in a Bolted Connection. 
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tightening occurs, the bolt begins to elongate and the nut begins to dilate (in the case of 

rigid mating materials), as shown in Fig. 2.2, creating a tensile force within the bolt that 

will in turn increase the fiction forces between interfacing surfaces. The bolt can continue 

to be tightened until an equilibrium is reached between the tightening torque and the 

summation of resisting forces (clamping force). At this point, the connection will not 

loosen until a force (loosening force) is applied in the opposite direction fiom tightening to 

overcome the clamping force (13). A detailed discussion of bolt loosening forces and 

torques is given in the next section. 

Bolt preload is commonly measured as axial tensile stress in the bolt that develops 

as a result of tightening. The tensile stresses can be considered to be uniformly 

distributed over the cross-section of the bolt (5). Bolt elongation, or strain, can be used as 

a measure of stress within the bolt. For example, a steel bolt will elongate 0.001 in. per 

inch of length for a 30,000 psi stress (14). Usually, a bolt is tightened to some percentage 

of its yield strength. Another stress within the bolt generated fiom tightening is a torsional 

stress. The distribution of this stress goes from zero at the bolt's center to it's maximum 

value at it's outer surface. As a bolt is tightened, both axial and torsional stresses develop. 

When the tightening torque is removed, the torsional stress in the shank of the bolt will 

cause the head of the bolt to twist back minutely until the friction under the bolt head is in 

equilibrium with the shank torque. This will cause a loss of shank torque and thus a 

reduction in preload (5). 

The main area of concern in bolt loosening is the interface between the surfaces of 

the bolt and nut, or thread engagement. As the bolt is tightened stresses also develop 

along the length of the thread engagement. One important note is that each thread that is 

engaged does not carry the same load. Generally, the threads closer to the head of the 

bolt carry more of the load than do the threads toward the end. Also effecting this 
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relationship is the depth of penetration of the threads within one another. The greater the 

penetration among threads, the more load they can carry and the more fiction that can be 

generated between them. This depth of penetration is a fbnction of bolthut class of fit. 

Class of fit refers to the looseness or tightness between mating threads. There are three 

classes of fit for Unified inch screws; 1, 2, or 3 with 1 being the loosest fit and 3 being the 

tightest. Also the class of fit is designated with an A or B for external or internal threads 

respectively. So, a 3A would designate a class 3 bolt and 3B would designate a class 3 

nut (1 7). 

3.3  Mechanics of Threaded Fastener Forces and Torques 

Threaded fasteners typically have V-shaped threads as shown in Figs. 3.1 and 3.2. 

However, to discuss and graphically illustrate the mechanics of their behavior, it is 

convenient to look at a simpler case, the square-threaded bolt or screw. The discussion 

below is a somewhat modified version of that presented in Ref (20). 

A square-threaded screw can be viewed as a bar of rectangular cross-section 

wrapped around a cylinder in a helical fashion, as shown in Fig. 3.3. The helix angle a is 

called the thread lead angle, the distancep between the threads is known as the pitch, and 

the mean radius of the threads is denoted by r.  These three parameters are related by 

as evident by the one unwound thread indicated in Fig. 3.3. 
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Figure 3.4 depicts a screw being used as a jack. Assuming that the torque M is 

large enough, it will cause the screw to advance and thereby elevate the weight W. This 

case can be simplified if we recall that in Coulomb's friction theory, the fiction force is 

independent of the contact area. Hence, we can assume the contact area to be very small, 

as illustrated in Fig. 3.4. Note that the entire weight W is carried by the contact area and 
M 

that the horizontal force Q = - models the applied torque M. Note that this case is 
r 

identical to the one shown in Fig. 3.5, namely, a block of weight W being pushed up an 

incline of angle a by the horizontal force Q.  

The smallest torque required to start the weight W moving upward can be 

obtained from the FBD in Fig. 3.5(b). Note that at impending sliding the angle between R 

and the normal n to the contact surface is 4 = #, , and that the direction of 4s relative to 

the normal n indicates that the impending motion is directed up the incline. For 

equilibrium of the block, 

Solving Eqns. 3.2 and 3.3, the smallest torque that will cause the weight W to move 

upward is 
( M ) w  = M A  = Wr tan(#s + a )  

If the direction of M is reversed and assuming impending motion down the incline, the 

FBD in Fig. 3.5(c) must be used. In this case, the equilibrium of the block, 



Figure 3 . 3  Modeling of Square-Threaded Bolt (20) 

Figure 3.4 Square-Threaded Screw Jack (20). 



(a) Modeling as Block on Inclined Plane. 

n 

(b) Impending Motion Up the 

. . 
n 

Plane (lifting W).  

n n 

(c) Impending motion Down the Plane (lowering W).  

Figure 3.5 Modeling of Square-Threaded Screw as 
Block on Inclined Plane (20). 
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Solving these equations as before, the smallest torque required to move the weight W 

downward is 

(M),_ = M, = Wr tan(#, - a )  (3.7) 

Note that if 4, > a, the torque M in Eqn. 3.7 is positive, which means that the weight W 

remains at rest if M is removed. In this case, the screw is said to be self locking. On the 

other hand, if 4, < a, the torque M in Eqn. 3.7 is negative, indicating that the weight W 

would come down by itself in the absence of M. If 4, = a ,  the screw is on the verge of 

unwinding. 

Assume that the square-threaded screw jack in Fig. 3 .4 is replaced by a V-thread 

as indicated in Fig. 3.6 (the helix angle of the thread is exaggerated for clarity). The force 

R acting on a representative small section of the thread is shown in Fig. 3.6 with its 

relevant projections. The vector R, is the projection of R in the plane of the figure 

containing the axis of the screw. 

Figure 3.6 V-Threaded Screw Jack (20). 
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The moment on the screw required to raise the load W in this case is given in Ref 

(24) as 

L 
where a = tan-' - 

2m 

4 = tan-' p 

The M required to lower the load W is 

It should be noted that for the case where 6= 0, i.e., a square thread, Eqns. (3.8) and 

(3.9) reduce to Eqns. (3.10) and (3.1 1) respectively. 

p - t a n a  
M ,  = Wr (3.11) 

1 + p t a n a  



Equations (3.4), (3.7), (3.8), (3.9), (3. lo), and (3.1 1) can be written as 

M, = WrC, 

M, = WrC, 

where C, and C, are the terms other than Wr in each equation. 

The equations for lowering the weight W,  i.e., Eqns. (3.9), (3.1 l), and (3.13) are the 

appropriate equations to use in the case of bolt loosening. It should be noted that the 

torques needed to overcome thread friction as well as to lift the weight W (or to develop 

the bolt preload P,) are included in the equations for MR and M, above. For example, in 

the absence of fiction, taking 4 = 0 in these equations will yield the torque needed to lift 

the weight W. Of course, in the absence of fiction, this torque would have to remain in 

place to prevent the weight from lowering due to the screw unwinding. 

Plots depicting the variation in C, and C, in Eqns. (3.10) and (3.1 1) with 

coeficient of fiction (p)  and thread angle (a) are shown in Fig. 3.7. This figure indicates 

that the coefficient C ( CR and C,), and thus the torque required to overcome thread 

fiiction and to lift or lower the weight is almost independent of a. Also, the figure 

indicates that C varies approximately linearly with p. Note that a p of approximately 

0.025 - 0.040 is required to prevent a screwlnut from unwinding by itself. Also note that 

the C values for the coarser thread, i.e., 10 threads per inch are slightly larger than those 

for the finer thread in raising the weight, but are smaller for lowering the weight. This is 

as would be expected. Note also, that C, F. C, c p is a rather good approximation of C 

An alternate approximation equation for bolt torque to overcome thread fiction is 

presented below. In deriving this equation, it is assumed that motion at the boltlnut thread 

interface is impending in both the radial and circumferential directions as indicated in Fig. 

3.8 Hence, 



Figure 3.7 Variation in (', and (', with Bolt Thread 

Angle (a) and Coefficient of Friction (p). 

Figure 3 . 8  Approximate Forces on a V-Threaded Bolt 

at Impending Slipping. 



0 0 
N(cos- + p, sin -) = Pp 

2 2 

N = PP 
0 0 

COS- + p, - sin - -  

2 2 

Hence, the torque, M, required to overcome thread friction is approximately 

It should be noted that the M required to develop the preload P, is not included in 

Eqn. (3.16). For convenience of comparison with the earlier equations, the torque 

required to develop preload (see Eqn. (3.21)) should be added (or subtracted for 

loosening) to Eqn. (3.16). This results in 



'.='*I COS- ' .  + ps sin - "tan.] 

M = ' ' .  
cos - + lS  sin - 

Ganguly (1 1) presented Fig 3 9 and Eqns (3.19) and (3.20) for torque to 

overcome thread friction. Referring to Fig. 3.9, the normal force component 

perpendicular to the thread flanks is PC. Hence, the circumferential friction force is 

I P 

FCUlCLlM = PSP = P S  - 8 
cos ; 

/. 

= = p B  \ I 
P, = BOLT AXIAL LOAD 

a = Thread lead angle 
-~ 

P, = Axial load 

pB = Normal force component of 
axial load perpendcular to 

(b) 
thread helix 

I 
0 = Thread angle 

PC = Normal force component of axial load 
perpenhcular to thread flanks 

Figure 3.9 Thread Friction Force (1 1). 



Therefore, the torque to overcome thread friction is approximately 

Again, for convenience of comparisons, the torque required to develop the preload should 

be added to the M of Eqn. (3.20). This yields, 

Recall in Chapter I1 it was reported that researchers in Japan found experimentally 
8 

that when the bevel angle of the threads was decreased from - = 30° to approximately 
2 

8 
- = 25', then the bolts did not loosen under vibratory loadings. In light of Eqns. (3.16) 
2 

and (3.20) this does not make sense theoretically, as both of these equations yield smaller 

values of C, and thus smaller torque to overcome thread fiiction when 8 is decreased. 

In addition to the bolt/screw torque required to overcome thread fiction, a torque 

is required to raise a ioad W or to develop a preload P, in the absence of fiction. As 

illustrated in Fig. 3.10, this torque (M,) is given below in Eqn. (3.23). 

Mp  = (Pp tan a)r 



M p  = Ppr tan a 

Of course, in the absence of friction, the torque in Eqns. (3.23) and (3.24) must be 

maintained or the boltlscrew will unwind itself 

A comparison of the torques required to overcome thread friction and to develop 

the preload for various thread types and simplifying assumptions are shown in Table 3 .1 .  

Each of the equations has been placed in the form, 

and the expressions for C, along with values for various values of p are presented in 

Table 3.1 and are plotted in Fig. 3.1 1 

Figure 3.1 1 indicates that all of the equations for C, require a p of approximately 

0.025 to prevent the screw or nut from unwinding by itself This is as would be expected. 

Note that all of the equations for C, are linear in p with the exception of the one labeled 

C .  Also note that 

is not a bad approximation for C, 



Mp /r 

Figure 3.10 Forces and Torque Needed to Develop Preload, P, . 



Table 3.1 Comparative Equations and Values of C, 

for Different Thread Types and SilnplifLing Assumptions 

Eqn No. ( 7 ,  Eqrlst Label in Values of (', * 
Fig.3.11 p=O p=O,l p=0.2 p=0.4 p=0.5 

3.11 
p- tana 
1 +,utana 

3.18 P 
8 0 

- tan a 
cos-- + psin - 

7 7 

3.22 -- tana 
8 

D -0.027 0.088 0.204 0.435 0.550 
COS - 

2 

t M I  = (', PPr (M, =Moment required to lower a weight). 

* Values shown are for B= 60" and a = 1.52' (16 threads per inch on a %"@ bolt). 



Figure 3 .1  1 Comparative Plot of C, Values vs. M for 

Various Thread Prediction Equations. 

Also, an additional bolt/screw torque (M,,) is required to overcome fiction forces 

developed under the bolt head or nut. These forces and resulting torque are as illustrated 

inFig. 3.12. 



Figure 3.12 Forces and Torque to Overcome Bolt Head Friction. 

For structural steel bolts as specified in Ref. ( I ) ,  the ratios HIL)  and DID,, are shown in 

Table 3.2. The variables H, D ,  and D,, are shown in Fig. 3.13. 

Table 3.2 Dimensional Ratios for Structural Steel Bolts 

D (in) H (in) HID DL&o DJDM 

Figure 3.13  Structural Steel Bolt 
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Based on Table 3.2, a HID ratio of 1.5 and a DID*, ratio of 1.10 are reasonable values 

to use to estimate the moment required to overcome friction forces under the bolt 

headlnut to loosen the bolt. These yield 

ro = 1 . 5 ~  (r, and r, are defined in Fig. 3.12) 

where r,, is the mean radius of the bolt threads and is the r used in the equations 

summarized in Table 3.1 .  Hence, from Fig. 3.12 

to allow for the facts that (1) r,, in Fig. 3 .12 is actually somewhat larger than (r, + r, )/2, 

and (2) there will be a clearance between the bolt edge and bolt hole, the value above 

should be increased by approximately 5%. This yields 

In turn, using Eqn. 3.28, this yields a moment required to overcome friction under the bolt 

headlnut of 

where 1 . 4 5 , ~ ~  = C = C, = C', 

Recall from Eqn. 3.24 that C, used in determining the moment required to overcome bolt 

thread friction was approximately equal to p. Hence, 



If p,, = p then 

M, = 1 4 5 M  (3 33) 

and is the dominant frictional moment to be overcome to loosen a bolt. Obviously, 

M,, = M + M ,  =(C,+1.45p,)Ppr (3.34) 

M, = (P+ 1 4 5 ~ ,  )Ppr (3 35) 

Recalling that 

where f = fraction of ay employed 

one can see the primary parameters affecting bolt loosening under static loading based on 

the mechanics of threaded fasteners are 

where M, varies in a linear manner with all parameters except for the bolt radius (or 

diameter), where it varies as the cube. Obviously, if a locknut of some type is used, M ,  

will be increased in direct proportion to the moment required to overcome the locking 
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device component of the locknut. Thus, the locknut device would be a major parameter in 

bolt loosening and, 

M y  = f, ( r  3 ,  4 , f +,pH,  locknut device) (3.39) 

Additionally, looseness of the bolt/nut thread fit, i.e., the class of fit (CF), as well 

as boltholt hole fit, i.e., the hole tolerance (HT), will affect bolt rocking, pinching, and 

micro impact loadings. These in turn will affect bolt loosening under vibrational loads. 

Theoretical considerations indicate that thread angle a (see Fig. 3.7) is not an 

important parameter to static bolt loosening. However, it is related and similar to the class 

of fit, with fine threads corresponding to small clearances between the threads. Because 

vibrational loadings have the potential to bend bolts in the region of the threads and thus 

cause bolt rocking and pinching and inter thread movements, it is anticipated that fine 

threaded fasteners will perform in a superior manner under vibrational loadings. 

Additionally, fine threaded fasteners have root of thread areas approximately 15-25 

percent larger than their course threaded counterparts. This allows 15-25 percent larger 

preloads and this would be quite significant in mitigating bolt loosening. 

Lastly, the character, magnitude, and duration of vibrational loadings, along with 

the geometrical setting of the bolt sustaining these loadings should have major impacts on 

bolt loosening. Thus, 

ML*- = f, ( r  ', ~y , f , p ,  pH , locknut device, CF, HT, a, 

vibrational load parameters, bolt setting/mode loading) 



3.4 Effects of Vibratoq Loadinas on Bolt Loosening 

The primary effects of vibrational loadings on bolt loosening are probably the 

following: 

Possibly having the loading frequency coincide with a natural axial vibration frequency 

of the bolt. 

Possibly having the loading frequency coincide with a natural frequency of the 

structural assembly that the bolt is connecting. 

Possibly causing minute transverse thread sliding due (a) to load eccentricities and thus 

bolt rocking action, (b) bending in the connected parts, or (c) transverse impact 

loadings. 

Each of these primary effects is discussed below. 

1 .  Vibration at bolt natural freauenc~. A bolt's hndamental axis natural frequency can be 

estimated as indicated in Fig. 3.14. If the lower plate in that figure is positively 

connected to the nut, and the bolt is loose, i.e., without preload, then the mass of the 

plate should be lumped on the end of the bolt model in Fig. 3.14. This would cause 

the natural frequency to decrease drastically. However, if the connection is a typical 

one where the plates connected are not attached to the bolt, but the bolt is under a 

preload, then it would only be appropriate to lump the mass of the plate on the end of 

the bolt if in turn the axial stiffness (k) of the model in Fig. 3.14 is increased to the 

value indicated in Fig. 3.15. This would be the case since when the spring force cycles 

to "tension," the plate interfaces remain in contact and reduce the level of 

precompression, i.e., they act as a monolith. As indicated in Fig. 3.14, bolt axial 
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frequencies are very large, and it would be very rare that vibrational loadings on a 

bolted system would contain frequencies this high. 

Axial impact loadings result in the propagation of a compression wave at very high 

velocity. Depending on the boundary conditions this wave could be reflected back and 

forth at frequencies of the same order as those of the bolt's natural frequencies. This is 

illustrated by the example in Fig. 3.16. Vibrations such as these could cause minute 

thread interface slippage or movements with each passage of the wave This in turn 

would promote bolt loosening. 

Figure 3.14 Modeling and Estimating Bolt Axial 

Fundamental Natural Frequency. 

I FB 

Figure 3.1 5 Axial Stiffness of Connected Plates 



Figure 3.16 Axial Impact Loading Propagation 

Vibration at natural fieauencv of connected assembly. Vibrational loadings which 

coincide with a natural frequency on the bolted assembly cause resonant vibration of 

the assembly. These in turn result in large amplitude displacements and g-forces. It is 

expected that the build-up to large displacements and the ensuing bolt twisting or 

rocking action (discussed in the next section) in particular, create an environment 

which is conducive to bolt loosening. The direction or mode of vibration of the 

assemblage in conjunction with the bolt geometrical arrangement will dictate the type 

of loading actions on the bolts, i.e., axial, shear, twisting, bendinglpryinglrocking, as 

illustrated in Figs. 3.17 - 3.19. Obviously the type of loading will have a great impact 

on bolt loosening. The literature indicates that vibrations which induce forces 

transverse to the axis of the bolt are the most severe for inducing bolt loosening. 

Vibrations causing forces parallel to the axis of the bolt are not likely to induce 

loosening unless they induce bolt prying action and/or bolt rocking. 
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3. Transverse slidine;. Haviland ( I  3) presents an excellent discussion of the loosening 

tendency of bolted joints due to transverse sliding. The discussion and illustrations 

presented below are a shortened and modified version of that presented by Haviland 

All bolts and nuts are made with a clearance between them to assure easy 

assembly. This means that the bolthut can be moved sideways. Recall that the helical 

thread is an inclined plane with the nut sitting on it, held against sliding by friction. 

The effects of a sideways movement on an inclined plane can be illustrated by placing a 

small pad on the side of a slippery book as indicated in Fig. 3.20. Now, tip the book 

upwards until the pad almost slides and try to slide the pad sideways with your finger. 

The pad slides downhill every time it is pushed sideways. It is not necessary to push 

the pad downhill due to the fact that it's weight moves the pad in that direction. This 

is what happens to a loaded thread made to slide sideways. 

Additionally, a side-sliding thread has a ratcheting action. Consider a cross section 

through the centerline of a bolt and nut as illustrated in Fig. 3.21. As the nut is moved 

into the page, the right side is moving uphill and the left downhill. Obviously, The 

uphill side will move with greater difficulty and acts as an anchor around which the nut 

rotates on the left side. If pulled from the page, the left side becomes the anchor and 

the right side rotates downhill. The net effect is small unwinding motions each time 

the nut is cycled sideways. 

Shear or side sliding is a common phenomena for bolted assemblies. It can be 

caused by bending of the assembly as illustrated in Figs. 3.17 - 3.19, by differential 

thermal expansions of the assembly, by shock or impact loadings such as indicated in 

Fig. 3.22, and by numerous other manners. It should be noted that the higher the 

clamping force, the less likely there is to be side movement; but if side down 

movement occurs, the bolt preload force will unwind the threads. 



Figure 3.17 Transverse Bolt Loading Through Assemblage Bending ( 1 3) 

Bolt motion 
&-p=g 

Figure 3.18 Bolt Rocking Motion ( I  3).  



Figure 3 19 Cantilever Beam of Two Flat Bars Bolted Together ( 1  9) 

Force r 
a) Modeling of Nut on Inclining 

Plane of Bolt 
b) Simulation of Transverse Sliding. 

Figure 3.20 Modeling of Bolt/Nut as Inclined Plane and Transverse Sliding (1 3) 



Figure 3.21 Ratcheting Action of a Side Sliding Thread (13) 

Figure 3.22 Transverse Shock Loading ( 1  3).  



3.5 Primarv Parameters Affecting Bolt Loosening 

There are probably 80- 100 parameters that have some impact on bolt loosening. 

The entire range of all these parameters could not be explored in this experiment. 

Through literature review, theoretical considerations, discussions and meetings with select 

personnel of MSFC, and engineering judgment the parameters that were felt to be 

dominant were identified. These parameters were investigated in this study in order to 

identifjl their degree of contribution to bolt loosening. Each parameter tested in this 

experiment is listed below along with a brief explanation for its selection. 

1 .  Bolt size (diameter): Fatigue resistance decreases with increasing diameter (8). 

Vibration resistance may exhibit the same relationship. Theoretical considerations (see 

Eqns. (3.39) and (3.40)) indicate bolt loosening moments vary with the cube of the bolt 

radius. 

2. Lubrication on bolt: Lubrication on the bolt threads causes the coefficient of 

friction between bolt and nut threads in contact to be reduced, thus causing the bolt's 

resistance to loosening to be decreased. 

3. Hole tolerance: The tighter the tolerance on the hole in a bolted connection, 

the less likely loosening is to occur within that connection. 

4. Initial pre-load: An increase in preload causes an increase in vibration 

resistance (9). 

5. Locking device: A nut which has a locking device is less likely to loosen than a 

nut that does not have a locking device. 

6. Griu lenfzth: The longer a bolt's grip length, the more likely the bolt will 

experience bending deformations, thus reducing the bolt's capability to maintain its 
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preload. There are conflicting reports in the literature on the effect of this parameter. For 

longer bolts, it appears that bending and possibly fatigue occurs rather than loosening. 

7. Thread uitch: The steeper the angle of the bolt threads, the less likely the bolt 

will be able to maintain friction between contacting threads of the bolt and nut, thus the 

less likely the bolt will be able to resist vibration (18). Also, fine threads allow larger 

preload and this should mitigate bolt loosening. 

8. Lubrication between matinn materials: Lubrication between the mating 

materials causes the coefficient of friction between contacting surfaces to be reduced, thus 

causing the joint's resistance to loosening to be reduced. 

9. Class of fit: There is always some clearance between the threads of the nut and 

bolt to assure easy assembly (13). Class of fit dictates how much clearance is between 

threads. The less clearance between threads, the greater the resistance to loosening the 

connection will have. 

10. Joint configuration: Two different test configurations were used in order to 

employ as many different joint assemblies as possible. 

11. Mass of configuration: As the mass that a bolt must clamp down increases, 

the inertia forces that the bolt must resist under dynamic loading increases as well, thus 

increasing the probability that the bolt will loosen. 

In addition to the design parameters listed above, there will be several noise 

parameters (see Section 4.2) implemented in the experiment. Each noise parameter is 

listed along with an explanation for its selection. 

1. Vibration direction: Both the axial and transverse (in relation to the axis of the 

bolt) directions of vibration were used in order to explore the effect of vibration direction 

on loosening. 



2. MaanitudeLevel of vibration amplitude: Two different g-levels were used in 

order to explore the effect of amplitude on loosening. As previously indicated, frequency 

of vibration affects bolt loosening, and both resonant and random vibrations were explored 

during preliminary testing. Because the preliminary testing indicated greater bolt 

loosening with random vibrations, and because these vibrations were considered to be 

more representative of actual flight conditions, this parameter was held constant, i.e., at 

random vibrations for all tests. Duration of vibrations also affect bolt loosening. Because 

of the short duration during flight in which significant vibration levels are experienced, this 

parameter was held constant at 2 minutes for all tests. This is approximately 3 or 4 times 

actual vibration durations experienced during flights. 

As previously noted, these parameters do not cover every possible parameter that 

could contribute to bolt loosening. However, the parameters chosen for this experiment 

are those that are believed to contribute the most to bolt loosening. 



IV. DESIGN OF EXPERIMENT AND 
EXPERIMENTAL TESTING PROGRAM 

4.1 General 

In this chapter, a description of the experimental design techniques used in the 

project is provided. Also provided is a discussion of the test parameters, a discussion of 

Taguchi methods, a presentation of the test matrix, a description of the equipment, test 

specimens, and testing program, and a discussion of additional testing conducted. 

4.2 Experimental Test Parameters and Values 

The design and loading/noise parameters listed in Section 3.5 were selected for 

experimental testing in this investigation. To keep the testing program within reasonable 

time and financial limitations, only two values of each test parameter were utilized. For 

each parameter, the 2 values selected should ideally be the upper and lower limits of 

values that could be expected in practice. However, because of availability of products or 

cost limitations, some parameter values used were not the limiting vaiues. Design and 

loadfnoise parameters and values used in the experimental testing are summarized in Table 

4.1. It should be noted that some of the experimental testing parameters and values were 

not finahzed until after preliminary testing was performed. The vibration amplitude was 

the only final parameter that was varied in the testing program, which fell into this 

category. However, vibration signature, i.e., resonant or random vibration was finalized 
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after preliminary testing and it was decided to perform all testing under random vibration 

loadings. The vibration duration of 2 minutes was also finalized after preliminary testing 

Table 4.1 Test Parameters and Values 

Test Load/Noise Parameter Values 
Parameters Parameters # 1 (lower values) #2(upper values) 

Bolt Size 114" 4 314" 4 
Lubrication on Threads None Tri-Flow 
Hole Tolerance Oversized Fit Tight Fit 
Bolt Preload 40% P,. 80% P, 
Locking Device Plain Nut Self-Locking Nut 
Grip Length t 112" , 1" l " ,  2" 
Thread Pitch * 20,  10 28,  16 
Lubrication on Mating Parts None Tri-Flow 
Class of Fit 2 3 
Joint Configuration Eccentric Concentric 
Mass of Configuration Mass of Specimen Mass of Specimen 

+ Additional Mass 

Vibration Direction Axial Transverse 
Vibration Amplitude 27 grms 40 grms 

t 112" - 1" for 1N"+ bolts and 1" - 2" for 314*'+ bolts. * 20 - 28 for 1/4"$ bolts and 10 - 16 for 3/4"4 bolts. 

4.3 Taguchi Methods 

When conducting experiments, it is imperative that the procedures used to cany 

out the experiment and the results obtained from the experiment can be reproduced. Also, 

it is important to conduct a cost efficient experiment. Dr. Genichi Taguchi has developed 

a set of techniques that implement statistics and engineering knowledge to meet these 

criteria. The principle contribution of Taguchi methods to this investigation is the concept 
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of the orthogonal array. In an orthogonal array, the relationship of the factors under 

investigation is such that for each level of any one factor, all levels of the other factors 

occur an equal number of times. This allows the effects of one particular factor under 

investigation to be separable from the effects of the other factors. The orthogonal array 

also allows the experiment to render a maximum amount of data with a minimum amount 

of testing. All combinations of all factors are not required to be tested, making the 

experiment cost efficient. 

According to Taguchi, there are two different types of parameters that can be 

explored; design parameters and noise parameters. Design parameters are those 

parameters which the designer has control over. Noise parameters are those parameters 

that the designer has no control over (22). 

4.4 Test Matrix 

In this experiment, there were eleven design parameters to be tested as well as two 

noise parameters (see Section 3.5 and/or Table 4.1). Using Taguchi's orthogonal arrays 

(25)  an L,, array was determined as the most beneficial array to use for the experiment. 

The L,, is a specially designed array that is used to determine only the main effects of the 

parameters. No interactions between the parameters are explored. This allows the 

experimental data to reveal which parameters contribute to loosening and the relative 

extent of their contributions. Where feasible, each design parameter and noise parameter 

had an extreme high and low level as indicated earlier. This was done in order to bound 

any loosening that might occur within these extreme levels. Each combination of design 

parameters, as dictated by the L,, array, was tested using both levels of both load/noise 



A OF= Oversize Fit 
TF= Tight Fit 

I I 

c A= Eccentric Joint Configuration 
B= Concentric Joint Configuration 

Random Vlbratlon 
Ax~al Direct~on !Trans D~rect~on 

B PN= Plain Nut D X= Small Mass 
SL= Self Lodting Nu! Y= Large Mass 

Figure 4.1 Test Matrix. 

parameters. Also, each test was repeated to give the data statistical credence and to gain 

some measure of repeatability and experimental error. The test matrix employed is shown 

in Fig. 4.1. 

4.5 Test Set-UR 

Small aluminum test specimens were mounted on a generic 22" mounting cube. 

This cube in turn was mounted on one of the shake tables in the Structural Testing 

Laboratory at MSFC. The two directions of vibration used in testing are shown in Fig. 

4.2. To achieve vibration in the axial direction of the bolt, the test 

specimen was mounted on the top of the 22" cube and the shaketable applied vibration in 

the vertical direction. To achieve transverse vibration, the test specimen was mounted to 
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(a)2-Piece Can t i l eve r  Vibrated i n  Axial  Di rec t ion  

(b )  2-Piece Can t i l eve r  Vibrated i n  Transverse Direc t ion  

Figure 4.2 Photographs of Typical Test Set-ups1. 

'Please note that both 114" and 314" bolts were used in testing, but only the 114" bl ts  are sho\vn in Fig. 
4.2. 



( c )  1-Piece Can t i l eve r  Vibrated i n  Axial  D i rec t ion  

(d l  1-Piece Can t i l eve r  V i b r a t e d ' i n  Transverse Direc t ion  

Figure 4.2 (cont.) .Photographs of Typical Test Set-ups. 



5 1 

the side of the 22" cube while the shaketable vibrated in the same vertical direction. 

Photographs of typical test set-ups are shown in Fig. 4.2. 

It should be noted that it was originally planned to use load cell washers to 

measure initial bolt load and bolt load afier vibration testing. However, preliminary testing 

resulted in malhnctioning of the load cell washer after vibration and this set-up and means 

of monitoring loss of preload had to be aborted. In its place, it was decided to measure 

the test bolt length prior to preloading, after preloading but before vibration testing, and 

after testing as a means of monitoring bolt preload and loss of preload. Precision 

micrometers were used in making these measurements and this method was employed in 

executing the test matrix of Fig. 4.1. As an alternate or backup in determining bolt loads 

and loosening, nut on-torque and off-torque were measured in the test set-ups. These 

data were used to estimate bolt load and thus loss of preload or extent of bolt loosening. 

A test set-up sheet for each of the 12 set-ups is provided in Appendix A. These 

sheets show the test specimen and joint configuration for each set-up and the values of the 

test parameters for the set-up. 

4.6 Test Specimens 

The test specimens used in this experiment were one piece and two piece 

cantilevers, as shown in Fig. 4.3 and 4.4. The dimensions of the cantilever specimens 

were different based on the diameter of the bolt to be tested by the specimen. This was 

done in order to keep the load on the 1/4"+ bolt proportional to the load on the 3/4"+ bolt 

based on the ratio of the two bolt areas, i.e., 



1 / 4 " b d  % o , A ,  1 
Ratio of bolt loads: - - - - - 

314"load %a,A, 9 

The smaller specimens (PS series) were used with the 1/4"+ bolts and the larger 

specimens (PL series) were used with the 3/49) test bolts. Likewise, different sets of 

lumped masses were used with different bolt sizes. Test set-ups 1-6 employed the 1/4"4 

bolts and the smaller test specimens. Set-ups 7-12 employed the 3 / 4 9  bolts and larger 

specimens. 

The two piece cantilever configuration is designed to introduce axial load and a 

prying action on the bolt when vibrated in the bolt's axial direction and shear and torsion is 

induced when vibrated in the bolt's transverse direction. The one piece cantilever 

configuration introduces axial load in the bolt when vibrated in the axial direction, and 

shear when vibrated in the transverse direction. Additional masses were used to achieve 

the desired mass of configuration and grip length desired when necessary. 

AU test specimens are made of 606 1 -T6 aluminum and all additional masses were 

made of A36 steel. They were fabricated by the machine shop at MSFC. Designl 

fabrication drawings were provided by the authors and a copy of these is provided in 

Appendix B. Also included in that appendix is a listing of the bolts and nuts used in the 

testing. All were commercial grade fasteners. 
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4.7 Test Eauipment and Instrumentation 

The following is a description of the equipment used to carry out the testing as 

prescribed by the test matrix. 

1. MT Ling Model B-335MS vibration machine 

2. 382 Hewlett Packard computer 

3. 35650 analog-to-DC and DC-to-analog converter and input modulus 

4. LMS CADA-X version 2.8 software 

5. UD amplifier 660 

6. Endevco control accelerometer model 2213-E 

7. Endevco response accelerometer model 2226 

8. Endevco charge amplifier model 2735 

9. Sony recorder PC 1 16 

1 0. Consolidated Services torque wrench model 2503DF (for 314" 4 bolts) 

1 1. Consolidated Services torque wrench model 6002DI (for 114" # bolts) 

12. Links Micrometer Models 90-2646 (1 " - 29,  90-0 150 (2" - 3 7 ,  

90-0490 (3" - 4"), 90-0120 (4" - 5") 

13. StressTel Version 1.3 BoltMike 

4.8 Testing Promam 

The testing program consisted of conducting the following testing in the sequence 

indicated. 

Preliminary Testing 

Execution of Test Matrix (Fig. 4.1) 

Static On-Torque and Off-Torque Testing 

Confirmation Testing 
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• Additional Testing 

Each of these are described in the subsections below 

4.8.1 Preliminary Testing 

Preliminary testing consisted of several experiments that were intended to indicate 

the proper vibrational loads to use in the actual testing as well as to finalize values for 

several test parameters. Tests were run on 114" 4 bolts. This was done because it was felt 

that the 114" 4 bolt would loosen more readily. 

Several different one piece and two piece cantilevers, with and without masses 

attached, were subjected to sinusoidal and random vibrations in order to determine the 

optimum vibrational load for bolt loosening. The only loosening that occurred during this 

testing was due to random vibration. Originally, a g-level of 60 grms was to be used for 

Level 2 in actual testing, but this proved to be too severe and Fatigue problems in the test 

specimen arose. For this reason a g-level of 40 grms was chosen for Level 2. 

As previously noted, time of duration for each test was based on the actual time a 

piece of hardware would experience vibration in flight with some factor of safety. Thus, 

time of duration for each test was set at 2 minutes. In preliminary testing, this time 

duration did not present fatigue problems for the test specimen, and thus was deemed 

acceptable. 

4.8.2 Execution of Test Matrix 

The test matrix shown in Fig. 4.1 required 12 different test set-ups, and for each 

set-up 8 different tests were performed (2 vibration directions, 2 vibration g-levels, and 1 

replication test of each set of parameters). Each of the 12 different test set-ups is listed in 
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detail in Appendix A, and the 8 tests performed on each set-up are identified as tests a 

through h in Table 4.2. 

Table 4.2 Test Set-ups 
t 

Test Vibration Direction g-level 

n a Axial 1 

n b Axial 1 

n c  Axial 2 

n d  Axial 2 
n e Transverse 1 

n f  Transverse 1 

n g  Transverse 2 
n h Transverse 2 

t n indicates set-up 1- 12. 

The following test procedure was used in each of the 96 tests conducted in 

executing the program test matrix. 

1. Secure a new bolt and nut for the test. 

2. Clean test specimen, bolt, and nut with an alcohol solution to insure that no 

grit was present between mating parts. 

3.  The test configuration was assembled as prescribed by the test matrix. 

4. For Configuration 1, one accelerometer was mounted at the test bolt, as 

shown in Fig. 4.4. For Configuration 2, two accelerometers were mounted 

at the test bolt and at the end of cantilever respectively, as shown in Fig. 

4.3. 

5 .  The untorqued bolt length was measured and recorded. 



6.  The torque required to produce the desired bolt load was applied, 

measured, and recorded. 

7. A sine sweep (10 - 1000 Hz 0.25 g,,, 2 oct/min) was performed in order to 

determine the configuration's first mode of natural frequency. 

8 .  The test configuration was vibrated for 20 seconds using Level- 1 in order 

to burnish the pieces to insure that any settlement between mating materials 

will not contribute to any preload loss. 

9. The configuration was subjected to the load parameters as prescribed by 

the test matrix. 

10. The change in bolt length and the torque required to loosen the nut were 

measured and recorded. 

4.8.3 Static On-Torque and Off-Torque Testing; 

On-torque is the torque required to achieve a desired bolt preload (tightening). 

Off-torque is the torque required to achieve first slippage between the bolt and nut 

(loosening). In the testing performed, on-torque was measured before vibration and off- 

torque was measured after vibration in order to measure any loosening that took place 

during vibration. These on-torque vs. off-torque values can be compared to values taken 

for bolts that have experienced no vibration. The difference in the two averages can be 

attributable to loosening. Static on-torque and off-torque tests were performed in order to 

make these comparisons. 

Each set-up as prescribed in the test matrix was used in order to measure on- 

torque and off-torque on the bolt with no vibration. In each test, a bolt was torqued to the 

on-torque value used in the vibration testing and then immediately untorqued. The on- 

torque and off-torque values were recorded. This process was repeated twice more on a 
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particular bolt for a total of three on-torque and off-torque measurements per bolt. Three 

bolts were used for each set-up. It should be noted that the bolts and nuts used in this 

testing were the same ones used in the vibration testing, i.e., they were all "once used" 

bolts/nuts. 

4.8.4 Confirmation Testing 

The data from executing the program test matrix was analyzed in the manner 

described in Chapter V. Results of this comprehensive analysis revealed many things 

including whether each of the 11 design parameter's high and low values had a favorable 

or unfavorable effect on bolt loosening. Based on these results, two confirmation tests 

were derived. The first test grouped all parameter levels that would be unfavorable to bolt 

loosening, as shown in Table 4.3. The set-up was vibrated in the axial and transverse 

direction and at the low and high g-level in each direction, resulting in 4 runs for the test 1 

set-up. The second test grouped all parameter levels that would be favorable to bolt 

loosening, as shown in Table 4.4. This set-up was also vibrated in the axial and transverse 

direction and at the low and high g-level in each direction, resulting in 4 runs for the test 2 

set-up. It should be noted that no repetitions were run in this phase of testing and that all 

bolts used were also used in previous testing. The procedure that was used to carry out 

the confirmation testing was the same as described in Subsection 4.8.2 with one exception. 

At the end of the vibration testing for each run, the static on-torque and off-torque testing 

was conducted while the specimen was still mounted on the shaketable. 



Table 4.3 Confirmation Test 1 Set-up 

Parameter Value 

Diameter 314" 

Lubrication on threads Tri-Flow 

Hole tolerance Tight 

Locking device Nylon insert 

Gnp length 2" 

Pitch 16 threadslin. 

Lubrication on mating mtls. Tri-Flow 

Class of fit 3 

Joint configuration Concentric 
Mass of configuration Mass of specimen+M4 

(small mass) 

Table 4.4 Confirmation Test 2 Set-up 

Parameter Value 

Diameter 114" 

Lubrication on threads None 

Hole tolerance Oversize 

Locking device None 

Grip length 1" 

Pitch 20 threadslin. 

Lubrication on mating mtls. None 

Class of fit 2 

Joint configuration Eccentric 

Mass of configuration Mass of specimen+M 1 

(large mass) 



4.8.5 Additional Testing 

Based on the data obtained fiom carrying out the testing prescribed by the test 

matrix, it was determined that additional testing must be performed. The following factors 

contributed to the need for more testing: 

1. A more accurate method for measuring bolt load was needed. Simply 

measuring the change in bolt length with a micrometer was difficult to measure on an 

accurate and consistent basis. Off-torque was inconsistent as well. 

2. The lubrication used (Tri-flow) was not effective in providing adequate 

lubrication between the two plates of the test configuration. As a result, once slippage 

started between the two plates, microwelding occurred which prohibited any hrther 

slippage. Without slippage possible, the loosening characteristics of the bolt being tested 

could not be evaluated. 

3. An error was made in estimating bolt load. Originally, 40% and 80% of the 

yield strength of the bolt was to be used as the initial bolt loads. The ultimate strength 

was erroneously used in calculating bolt loads, and as a result, the bolts tested were 

severely overloaded. 

4. The vibrational loadings imposed on the test specimens did not result in 

significant bolt loosening. 

In order to measure the load on the bolt more accurately, an ultrasonic measuring 

device was used (BoltMike). The BoltMike sends an ultrasonic wave through the bolt by 

placing a transducer on the head of the bolt as shown in Fig. 4.5. The time of travel of the 

sound wave is measured and based on the material properties of the bolt, the bolt length 

can be obtained. Also, by inputting the cross-sectional area and effective length of the bolt 

(shown in Fig. 4.6), the BoltMike was able to determine any load on the bolt based on 

change in length. 
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To minimize microwelding between the two plates of the test configuration, a 

mixture of molybdenum disulfide and axle grease (moly-lube) was used. Moly-lube is 

more viscous and cohesive than Tri-flow and thus can provide better lubrication, 

BOLT MIKE - 
TRANSDUCER 

Eurrs  
ULTRASONIC 

WAVE 

SOUND WAVE ECHO RETURNS 
TRAVELS 'ID TRANSDUCER 

THROUGH 
BOLT 

BASED ON TIME OF TRAVFI-OF ..-. 
SOUND WAVE AND MATUUhL 
PROPEKI'lES. BOLT L E N m  IS . - - - - - . . . - 

MEASURED 

Figure 4.5 Ultrasonic Measurement of Bolt Length 

EFFEmNE 
GRIP 

mm 

Figure 4.6 Input Dimensions for BoltMike. 
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especially at higher clamping forces. Also, the contact surfaces of the plates were planed 

and sanded as flat and smooth as possible to help reduce microwelding. A yield strength 

of 30 ksi was used for all bolts to calculate bolt preload. 

In addition to adjusting the values of some of the design parameters, the vibration 

loading conditions were made more severe. The duration of the vibrational loadings were 

doubled (fiom 2 minutes to 4 minutes) in the additional testing. 

The only parameters that were varied in the additional testing were bolt diameter, 

lubrication, and bolt preload. All other parameters were held constant resulting in 8 

different test set-ups for a complete factorial testing (all combinations of the 3 pararneters 

and 2 levels). The values for all parameters can be seen in Tables 4.5 and 4.6. It should 

be noted that lubrication in these tests indicates lubrication on both the threads and mating 

materials. Each set-up was vibrated in the axial and transverse direction for 4 minutes at 

the high g-level resulting in a total of 16 tests. The following steps were followed for each 

test. 

1. Clean test specimen, bolt, and nut with an alcohol solution to insure that no 

grit was present between mating parts. 

2. The test configuration was assembled as prescribed Table 4.5 or 4.6. 

3.  Accelerometers were mounted at the test bolt and at the end of the 

cantilever as shown in Fig. 4.4. 

4. The untorqued bolt length was measured with the BoltMike and recorded. 

5 .  Torque was applied to the bolt. While monitoring the bolt load with the 

BoltMike, the desired preload was applied. 

6. A sine sweep (10 - 1000 Hz 0.25 g,,, 2 oct/min) was performed in order to 

determine the configuration's first mode of natural frequency. 



7 .  The test configuration was vibrated for 20 seconds using Level-1 in order 

to burnish the pieces to insure that any settlement between mating materials 

will not contribute to any preload loss. 

8. The configuration was subjected to Level-2 for 4 minutes or until loosening 

occurred. 

9. The final bolt load was measured with the BoltMike and recorded. 

10. The torque required to loosen the nut was measured and recorded. 

Table 4.5 Test 1-4 Set-ups for Additional Testing 

Constant Values Variable Values 
Parameter Value Parameter Values 

Diameter 114" Lubrication: All parts 

Hole tolerance Oversize None 

Locking device None 
Grip length 1.5" Preload: 40% P ,, 

Pitch 20 threadslin. 80% P ,. 
Class of fit 2 

Joint configuration Eccentric 

g-level Level 2 (4 mins) 

Mass of config. Mass of specimen + M1 



Table 4.6 Test 5-8 Set-u~s for Additional Testing 

Constant Values Variable Values 
Parameter Value Parameter Values 
Diameter 314" Lubrication: All parts 
Hole tolerance Oversize None 
Locking device None 
Grip length 2.5" Preload: 40% P,, 
Pitch 10 threadslin. 80% P,, 

Class of fit 2 
Joint configuration Eccentric 
g-level Level 2 (4 rnins) 
Mass of config;. Mass of specimen + M7 



V. EXPERIMENTAL RESULTS AND DATA ANALYSIS 

5 .1  General 

A total of 228 tests were performed in this study: 96 vibration tests in the 

execution of the test matrix, 108 static on-torque vs. off-torque tests, 8 vibration tests in 

confirmation testing, and 16 vibration tests in additional testing. The experimental data 

obtained fiom each of these tests series are presented in the sections below along with the 

associated data analysis. 

5.2 Test Matrix Data 

Raw data resulting fiom execution of the program test matrix (see Fig. 4.1) are 

shown in Appendix C. A summary of the raw torque data is given in Table 5 .1 .  

Due to the fact that bolt on-torque and off-torque differ by a value of 

an adjustment was necessary to get the two torques on a common basis to assess the 

effects of vibration on bolt loosening. Rather than use these theoretical values, static on- 

torque and off-torque tests were conducted to determine the adjustment value for each set 

of conditions. The results of these tests are presented in the next section. The dynamic 

testing on-torque values were adjusted down to provide an adjusted off-torque before 
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Table 5.1 Summary of Raw Torque Data. 

Notes: 1. K1 = longitudinal vibration, K2 = axial vibration, gl  = low g-level vibration, g2 = high g- 
level vibration, a and b are replications of each other as are c and d, e and f, and g and h. 

2. The four ?? entries above are for tests where torque-off was not recorded. For these tests, we 
know that complete bolt loosening cfid not occur. Torque-off values for the replica test were 
used for these missing data. 

3. Test Ih lost all of its initial torque due to vibration. 
4. Test 12a indicated an increase in torque due to vibration. 
5. In test 4e the outer segment of the test specimen rotated approximately 10" early in the test 

and then microwelded to the inner segment of the specimen. 

Table 5.2 Summary of Adjusted Torque Data. 
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vibration testing. These values were then used to determine changes in loosening torque 

due to vibrations, i.e., 

Adj. Torque = (Dynamic On-Torque)-[(Static On-Torque)-(Static Off-Torque)] (5.2) 

ATorque Loosening = (Adj. Torque) - (Off-Torque After Vibration) (5.3) 

The adjusted torque data are shown in Table 5.2. 

Also recorded in each test was an input signature plot and a response plot for each 

accelerometer used. An example of these plots can be seen in Figs. 5.1 and 5.2 

respectively. 

The loosening of a test bolt can be measured by ATorque Loosening as described 

in Eqn. (5.3) or by a change in bolt load as a result of vibration. Since torque was 

measured in ftelb or inlb and bolt load was evaluated in lb., the two values are not readily 

comparable and thus a non dimensional value is needed. A p-value was used for this 

reason. In the case of torque being used for the measure of bolt loosening, the p-value 

used was 

where Torq~e , , , ,~ ,  is the adjusted torque as described in Eqn. (5.2) and Torquerem,,, is the 

dynamic off-torque value The p-values based on the adjusted torques in Table 5.2 are 

shown in Table 5.3. These are the test results used in all analysis which are based on 

torque data. 



Figure 5 1 Typical Input Signature Plot. 

Figure 5.2 Typical Response Plot From Accelerometer. 
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In the case of bolt lengtldload being used as the measure of bolt loosening, the test 

response parameter or p-value used was 

where Load,,,,,, is the bolt load due to initial torquing and Load,,,,,, is the bolt load after 

vibration. It should be noted that the change in bolt length was measured during testing in 

order to compute bolt loads. Change in bolt length and bolt load are related by the 

following equation: 

where P is load on the bolt, A is change in bolt length, A is cross sectional area, and E is 

Young's modulus of elasticity. 

The higher the p-value, the more bolt loosening there is, thus a p-value of I would 

indicate total loosening and a p-value of 0 would indicate no loosening at all. The p- 

values based on the adjusted torque data and the raw bolt lengtMoad data are shown in 

Tables 5.3 and 5.4 respectively. It can be noted in Table 5.4 that the raw bolt length/load 

data yielded 8 unrealistic values (negative values or values greater than 1.0). The negative 

values were adjusted to 0.000 and the values greater than one were adjusted to 1.000. 

The resulting Table is shown in Table 5.5. 
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It should be noted that in executing the program test matrix, the 2-piece aluminum test 

specimens exhibited a considerable amount of microwelding. In one test (Test 4e), the 

outer cantilever segment rotated approximately 10" relative to the inner segment early in 

the testing and then stopped rotating. At the end of the test the two segments could only 

be separated by using a great amount of force due to microwelding. This difficulty in 

separation was quite common with the 2-piece specimens, particularly under the larger 

preloads regardless of lubrication. In the cases of large preload and lubricated interface, 

pressures were large and the lubrication probably allowed some initial movement at the 

interface but was not viscous enough to provide adequate lubrication thus microwelding 

occurred. When this occurred, the joint acted as a welded connection and actions to cause 

bolt loosening were greatly reduced. This occurrence probably added considerable 

"noise" to the data and caused problems in correlating the data with theoretical best 

performance predictions. 

5.3 Test Matrix Data Analysis 

The test data presented in the previous section was analyzed using the p-values 

shown in Tables 5.3 and 5.5 as the bolt loosening response parameters. A general analysis 

looking at average p-values and the variation in p-values with the design parameter values 

was performed first. This was followed by an ANOVA (Analysis of Variance) analysis. 

The results of these analyses are presented below. 

5.3.1 General Analysis of Data 

Static torque testing data was combined with the data from executing the program 

test matrix to evaluate the normalized P , ~ , ~ , ,  response parameter in the manner indicated 

by Eqn. (5.4). This parameter was taken as the measure of bolt loosening in the adjusted 
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data shown in Table 5.3. In turn, this data was averaged for each design parameter and 

for each loading parameter and the results are shown in Table 5.6. For example, the value 

of 0.062 shown in Table 5.6 for A1 and Transverse/g2 Load is the average of 12 results, 

i.e., 12 tests where the A parameter was at its value of A1 and the load parameters were 

transverse/g2. The 12 consisted of 6 different tests with 1 replication of each test. The 

total average p-value of 0.025 shown for A1 in the next to last column is the average of 48 

tests where the A parameter was at its A1 value. Thus, each entry in the 4 average 

response parameter value columns are the average of 12 tests, and each row and column 

of this 20 x 4 array (mid portion of the table) was averaged as indicated in the table. The 

last two columns of the table show values which are boxed-in to indicate parameter levels 

for each parameter which are best at mitigating bolt loosening due to vibrations. Recall, 

from the definition of p ,  the larger its value, the greater the bolt loosening. Also, as 

indicated earlier, one would expect p to fall in the range of 0 r p r 1, where p = 0 

indicates no loosening and p = 1 indicates complete loosening. It is theoretically possible 

to have negative values of p (indicates bolt tightening due to vibrations), however this is 

quite improbable. Table 5.6 indicates an average p-value of 0.003 for all tests. This 

represents an approximate average loosening of 0.3% per test and indicates very little 

loosening due to vibration. 

The average p-values for the high and low levels for each design parameter are 

shown plotted in Fig. 5.3  for the transverse/g2 loading (column 4 in Table 5.6). This 

column was chosen because transverse loading at the high g-level should be the loading 

most likely to produce bolt loosening. The average p-value of 0.01 7 for this set of 

conditions is shown superimposed (dotted lines) on the plots of Fig. 5.3. This value 

represents an approximate average loosening of 1.7% per test. 
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A study of Table 5.6 and Fig. 5.3 indicates the following: 

1. The low p-values and their fluctuation around zero, with negative values being common 

and almost as large as positive values, seems to indicate that very little bolt loosening 

occurred in the testing program. 

2. The numerous negative p-values indicate that parameter variability, noise, and 

experimental error were probably the main source of A torque and not actual bolt 

loosening due to vibrations. 

3 .  The best (boxed) parameter levels for the total average p-value in the next to last column 

compare favorably with the best parameter level one would expect from theory shown 

boxed in the last column. These two columns showed disagreement in the H parameter 

(mating part lubrication) and G parameter (thread pitch). A possible explanation of this 

disagreement is that the lubricated and course thread smaller contact surfaces resulted in 

larger bolt preloads for these cases (since they were torqued to the same value for each 

parameter level). This in turn caused larger II;WJO, values and thus better bolt vibration 

performances, i.e., better nonloosening performances. Also, the occurrence of 

microwelding in the 2-piece cantilever specimens mentioned earlier was probably a major 

factor in the disagreement between theory and the test data. 

4. A comparison of the first column best parameter levels with those from theory indicates 

good agreement except for the B, H, and L parameters. The B and H parameters both 

relate to lubricated surfaces (threads and other mating parts), and the cause of this 

discrepancy may be as discussed in (3) above. The improved performance in the 

presence of the additional mass may be due to the additional mass reducing the natural 

frequencies of the test specimens, and these reduced frequencies having a greater 

mitigating effect on bolt loosening than the detrimental effect caused by the increase 

masslinertia of the test specimens. 
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lx 
[X1 

l x j  

g2 vs g1: t t J  
g* LOADING IS BFITER 

mAL 
p 

VALUES 

& 
%% 

0.020 

fi 
[-00161 

0.023 
0.022 
lmm 

0.029 
1-0.0261 

0.035 
1-0.0311 
1-00141 

0.0 19 

0.003 

PARAMETER 
LEVEL 

1/4"0 
3/4"0 

NONE 
TRIFLOW 

OVERSIZE & 0.4 PU 
TIGHT & 0.8 PU 

PLAIN NUT 
SL NUT 
0.94"/1.62 
l.Sl"R.62" 

COURSE U1/10 
RNE 28/16 

NONE 
TRDLOW 
CLASS 2 
CLASS 3 

2 PC CANTILEVER 
1 PC CANTILEVER 
TEST SPECIMEN 
TEST SP + MASS 

PARAMETER 
DESCRIPTION 

FASTENER SIZE 

THREAD LUB 

HOLE TOLERANCE 
& PRELOAD 

LOCKING DEVICE 

GRIP STRENGTH 

PITCH 

MATING PART LUB 

CLASS OF FIT 

JT. CONFIGURATION 

MASS OF 
CONFIGURATION 

AVERAGE RESPONSE PARAMETER (p) VALUES 

AVG VALUE? 

AVG 

LETrER 
DESIGNATION 

A 1 
A2 
B1 
B2 

CDI 
CD2 
El 
E.2 
F1 
R 
G 1 
G2 
H1 
H2 
I1 
I2 
J 1 
J2 - -  
L1 
U 

AXIAL & 
gl LOAD 

0.06 1 
-0.014 
0.002 
0.015 
0.030 

-0.014 
0.068 

-0.051 
0.038 

-0.021 
0.003 
0.014 
0.04 1 

-0.024 
0.070 

-0.054 
0.070 

-0.054 
0.011 

-0.028 

0.008 

0.008 

TRANSV. & 
gl LOAD 

0.058 
-0.044 

-0.004 
0.018 
0.029 

-0.016 
0.052 

-0.020 
0.045 

-0.032 
-0.017 
0.033 
0.038 

-0.024 
0.059 

-0.045 
0.029 

-0.016 
-0.024 
0.037 

0.008 

TRANSV. & 
g2 LOAD 

0.062 
-0.028 
0.073 

-0.039 
0.057 

-0.023 
0.087 

-0.053 
0.045 
-0.0 1 1 
0.042 

-0.008 
0.083 

-0.049 
0.034 
0.00 1 
0.044 

-0.010 
A 

0.029 
0.006 

0.017 

VALUES: 

AXIAL & 
g2 LOAD 

-0.079 
-0.034 
-0.081 
0.036 

-0.036 
-0.0 10 
0.029 

-0.074 
-0.026 
-0.019 
-0.092 
0.050 

-0.074 
0.029 

-0.048 
0.006 

-0.003 
-0.043 
-0.05 1 
0.006 

-0.023 

-0.003 
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5 .  Comparing average p-values for Transverse vs. Axial loadings at the bottom of 

the table indicates that axial loadings are better at mitigating bolt loosening. 

6 .  Comparing average p-values for gl  vs. g2 loading levels at the bottom of the table 

indicates that the g2 loading (the higher load level) is better at mitigating bolt 

loosening. This could possibly make sense because of the microwelding occurring 

when testing many 2-piece cantilever specimens. The more intense g-level loading 

(g2) would cause greater microwelding and this would inhibit relative movement 

and thus inhibit bolt loosening. The fact that half the specimens tested were of the 

2-piece construction could bias the results to indicate the g2 loading is better at 

mitigating bolt loosening. However, this is an abnormality of this particular set-up 

and should not be valid in most situations. 

7.  The larger variation in p-values and their low values indicates that additional 

preliminary testing is needed to attain test specimens, loading signatures, 

intensities, and durations which all achieve significant bolt loosening. This is 

needed in order that threshold loosening values of major parameters can be 

determined. 

8.  The inconsistencies and disagreements with theory, e.g., those cited in (3), (4), and 

(6) above indicate that additional preliminary testing is needed to better understand 

the vibrational loading - boltljoint behavior and thus later predict and prevent bolt 

loosening. 

5.3.2 ANOVA Analvsis of Data 

A comprehensive ANOVA (Analysis of Variance) analysis, which considers each 

dof in the experiment, was performed on the test matrix data by the project subcontractor 

ITEQ. The results of their analysis are presented below. 



5.3.2.1 Analvsis Based on Adiusted Toraue Data 

An ANOVA on the adjusted torque data shown in Table 5.3 was performed and 

the resulting ANOVA table is shown in Table 5.7. This table shows the decomposition of 

every possible source of variation in the test matrix. In this table, large p-values indicate 

parameters (or 2 parameter or 3 parameter interactions) that have a significant effect on 

bolt loosening. These values and parameters are marked with an asterisk (* * or *) in the 

last column of Table 5.7. The first column of the table indicates the parameters and 

parameter interactions, and the letter designations shown are the same as those defined in 

Table 5.6 and Fig. 5.3. Table 5.8 shows the final ANOVA table once all the insignificant 

sources of variation are pooled into the error estimate. Figure 5.4 shows how the p-values 

vary with the two insignrficant parameters identified in Table 5.8. 

5.3.2.2 Analvsis Based on Adjusted LenathLoad Data 

The complete ANOVA table showing the decomposition of every possible source 

of variation using the adjusted bolt lengtMoad p-value data of Table 5.5 is shown in Table 

5.9. These data indicate that the E and J parameters are si@cant to bolt loosening, and 

indicate that the A and L parameters are also significant as is the IxKxG interaction. The 

final ANOVA table once all of the insignificant factors of variation are pooled into the 

error estimate is shown in Table 5.10. Plots of these sigmficant parameters are shown in 

Fig. 5.5. 



Table 5.7 Anova Table for Adjusted Torque p-Value Data 

BxK 
CDxK 

ExK 
FxK 
GxK 
HxK 
IxK 

JxK 
LxK 1 0.0050 

k g  1 0.0799 
Bxg 1 0.0012 

CDxg 1 0.0019 
&I 1 0.0019 
Fxg 1 0.01 11 
Gxg 1 0.0015 
Hxg 1 0.0148 
Ixg I 0.0776 
Jxa 1 0.0083 
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Table 5.8 Pooled ANOVA Table for Adjusted Torque p-Value Data 

Adjusted Torque Values 

Source 
E 
J 

e(pool) 
T 

d f S V F S' P(%) 
1 0.3206 0.3206 12.40" 0.2782 10.40 
1 0.1033 0.1033 4.23* 0.0789 2.90 
93 2.2688 0.2440 2.31 76 86.60 
95 2.6747 2.6747 99.90 

Figure 5.4 Response Parameter vs. Design Parameters 
E and J for Adjusted Torque Data. 

0.080 - 
0.060 - 
0.040 - .  

z 0.020 - 
1 g 0 . m - -  

a -0.020- 

-0.040 - 
-0.060 - 
-0.080 + 

1 

I Experimental Average = 0.002 

I I - El E2 - J1 J2 

Factors & Levels 



Table 5.9 ANOVA Table for Adjusted Lengthkoad p-Value Data 

BxK 1 
CDxK 1 

ExK 1 
FxK 1 
GxK 1 
HxK 1 
IxK 1 
JxK 1 

Exg 1 cDxgl 
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Table 5.10 Pooled ANOVA Table for Adjusted LengtNLoad p-Value Data. 

-- 

Adjusted LengthILoad Values 

Source 
A 
E 

L 
lxKxg 

e(pool) 
T 

Figure 5.5 Response Parameter vs. Design Parameters 
A, E, J, and L for Adjusted Lengthload Data. 

d f S V F S' p(%) 
1 0.4746 0.4746 6.50* 0.4016 4.28 
1 0.6484 0.6484 8.88" 0.5754 6.1 3 

J . 1  0.641 9 0.641 9 8.79** 0.5689 6.06 
1 0.5750 0.5750 7.88" 0.5020 5.35 
1 0.4830 0.4830 6.62* 0.41 00 4.37 

90 6.5661 0.0730 6.931 1 73.82 
95 9.3890 9.3890 100.01 



5.4 Static On-Torque vs. Off-Toraue Data 

The data collected for these tests was the result of each set-up prescribed by the 

test matrix (Fig. 4.1) being used to measure on-torque vs. off-torque on the bolt with no 

vibration. Each bolt was torqued to the on-torque value used in vibration testing and then 

immediately untorqued. Both torque values were recorded. This process was repeated 

twice more on a particular bolt for a total of three on-torque and off-torque measurements 

per bolt. Three bolts were used for each set-up. The data for this testing can be seen in 

Appendix D. 

It should be noted that this data was intended solely for the use of modifying the 

on-torque and off-torque data as described in Section 5.2. The static on-torques and off- 

torques (Appendix D) and the dynamic on-torques and off-torques (Appendix C) are very 

similar as evident in Table 5.1 1 and in Figs. 5.6 and 5.7. These figures seem to indicate 

that there was little, if any, bolt loosening in the vibration testing. 



Table 5.1 1 Bolt Torque Reductions and Torque Tightening 
Torque Loosening Ratios for Vibration Testing and Static Testing 

A TORQUE =TORQUE TO TIGHTEN - TORQUE TO LOOSEN 
*ATORQUE=MT- ML 

TEST 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

VIBRATION 

AVG A TORQUE* 

25.7"# 

21.9"# 

46.3"# 

27.9"# 

37.5"# 

43.6"# 

30.0"# 

35.OW# 

20.OV# 

43.8"# 

37.5"# 

15.0"# 

TFST RESULTS 

AVG MTML 

1.5 1 

1.3 1 

1.48 

1.43 

1.34 

1.47 

1.21 

1.24 

1.18 

1.34 

1.43 

1.12 

STATIC TEST 

AVG A TORQUE* 

22.2"# 

19.4-# 

52.8"# 

17.8"# 

51.1"# 

36.7"# 

27.2"# 

36.1 "# 

32.8"# 

39.4"# 

33.3"# 

17.8"# 

RESULTS 

AVG MT/ML 

1.35 

1.26 

1.54 

1.22 

1.52 

1.32 

1.18 

1.25 

1.32 

1.28 

1.36 

1.18 



A TORQUE- 
STATIC 
TEST 

[TEST NO. 

20 - 
0 4  

I I I 

0 10 20 30 40 50 

TESTS 1-6 USE 114-0 BOLT 
TESTS 7-12 USE 314-0 BOLT 

IN-LB K l R  114" BOLT 
A - 'IB' ( FT-LB FOR 314" BOLT ) 

Figure 5.6 Plot of A Torque Vibration v s  A Torque Static. 



STATIC 
TEST 

MTIML 

1.6 - 

1.5 - 

1.4 - 

1.3 - 

TESTS 1-6 USE 114-6 BOLT 
TESTS 7-12 USE 314-8 BOLT 

1 1.1 1.2 1.3 1.4 1.5 1.6 

VIB. TEST MT/ML 

Figure 5.7 Plot of M ,  / M ,  Vibration Tests vs. M ,  / M, Static Tests. 

c-a . 



5.5 Confirmation Testing Data 

Based on statistical averaging of p-values from executing the program test matrix 

and engineering judgment two tests were designed to confirm the results of executing the 

program test matrix. Confirmation Test #1 consisted of parameter levels that would be 

unfavorable to bolt loosening and Confirmation Test #2 consisted of parameter levels that 

would be favorable to bolt loosening. A detailed listing for all parameter and input levels 

can be seen in Tables 4.3 and 4.4. The data for confirmation testing is shown in 

Appendix E. 

A predicted mean p-value (b,) was calculated for each confirmation test. If the 

mean p-value calculated from testing falls within the range of 3, then the parameter 

levels selected for each test can be assumed to be correct with some degree of confidence. 

The following calculations were made using p-values based on adjusted torque data. 

95% Confidence interval for the estimate: 

Where: 

Therefore: 
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Prediction at A1B,(~L1,1;,',F,G, H I / ,  J ,  L, : 

;, = E + J ,  - T  

Where: 

,!?, & J ,  are average values of the E and J parameters at level 1 
- 
T is the experimental average 

Therefore: 

Confirmation at A,B,CD,E,F,G,H,I,.J,L,: 

Please note that p,, falls within the 95% confidence interval of the prediction 

In a similar manner, the prediction and confirmation mean p-values were calculated 

for A,R,CD, E, F,G,H,/, J ,  L, using p-values based on adjusted torque data. In addition, 

prediction and confirmation mean p-values were calculated for both confirmation tests 

using p-values based on bolt load data. These values can be seen in Table 5.12. 

Please note that all confirmation mean p-values fall within the 95% confidence 

interval except the A, B, CD, El F, GI H,I,  J ,  L, experiment based on bolt load. 



Table 5.12 Prediction and Confirmation Mean p-Values. 

A,BICD,E,F,GIH,I,.JIL, A 2 B 2 m  E, F2G2H212 J ,  L, 

Based on adjusted torque: 

Based on bolt load: 

f i ,  = 0.610_+0433 

p,,, = 0.150 

5.6 Additional Testing Data 

The additional tests were run in an attempt to address the problems that were 

encountered in executing the program test matrix. These problems are explained in detail 

in Section 4.9. Also, based on the lack of loosening that was encountered in executing the 

program test matrix, additional tests were run in an attempt to get more bolts to actually 

loosen so that the design parameters could be evaluated. The data for the additional tests 

can be seen in Appendix F. It should be noted that Test 8a could not be run because the 

test specimen fatigued prior to this test. 

The p-values based on bolt load for the additional testing along with the average p- 

values for the axial, transverse, 40% P,, , and 80% P, tests can be seen in Table 5.13. In 

this table, any negative p-values resulting from the raw data were replaced by zeroes. 
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Table 5.13 p-Values for Additional Testing 

Average p-Values: 

Axial 0.223 Lub. 0.467 
Trans 0.662 Non Lub. 0.286 

40% Py 0.514 114"Bolt 0.641 
80% Py 0.392 314" Bolt 0.248 

Notes: 1 .  a = axial drection of vibration, b = transverse drection of vibration. 
2. Tests 1 ,  2, 5. and 6 were lubricated tests and tests 3,  4. 7. and 8 were non lubricated tests 
3. Tests 1, 2, 3, and 4 were 114" bolts and tests 5,6,7,  and 8 were 314" bolts. 

Figures 5.8, 5.9, 5.1 0, and 5.1 1 are plots of the average p-values for vibration 

direction, bolt preload, lubricated parts, and fastener size respectively. Figure 5.8 

indicates that the transverse direction of vibration had a significant impact on bolt 

loosening compared to the axial direction. Figure 5.9 indicates that using a bolt preload of 

40% P, produced more loosening than when a bolt preload of 80% P, was used; 

however, the difference was relatively small. It is anticipated that once the bolt preload 

drops to lower values, bolt loosening will readily occur. More testing to better quantify 

the effect of bolt preload (over a wide range of values) on bolt loosening. Figure 5.10 

indicates that lubricated joints loosened more than non lubricated joints as a whole, but 

hrther inspection reveals that the small bolts that were unlubricated showed greater 

loosening than the lubricated and for the larger bolts the opposite was true. Additional 

testing with this parameter is needed to better determine the effects of lubrication on bolt 

loosening Figure 5.11 indicates that 114" 4 bolts loosened more than the 314" 4 bolts. 
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Comparing the performances of the 114" 4 and 314" I$ bolts, indicates that severity of 

vibration loadings have a major impact on bolt loosening. The smaller bolt was under a 

more severe vibration loading relative to its size and in 5 of the 8 tests the 114" 4 bolt 

completely !oosened due to vibration, whereas only 1 of 7 of the 314" 4 bolts completely 

loosened during testing 

Vibration Direction 

! 0.800 1 

' 0.000 - 1 I 
I Axial Trans ' 

Figure 5.8 Comparison of p-Values for Vibration Direction. 

I Bolt Preload I 

Figure 5.9 Comparison of p-Values for Bolt Preload. 



I 

Lubrication 
~ 

0.500 
I J 0.400 ! _Z 

--- \_- i 3 0.300. \ 

I 7 0.200 1 
! a 0.100: 0.000 .. 

Lub. Non 
Lub. 

Figure 5.10 Comparison of p-Values for Lubricated Parts 

Fastener Size 1 O . l O O 1  
J 0.600 r+-, 

3 0.400 1 l-. 
1 0.200 1 

0.000 -- 
114" 314" 
Bolt Bolt 

Figure 5 .1  1 Comparison o f  p-Values for Fastener Size. 



VI. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions Based on Theoq 

Theoretical considerations and the literature teach us that for static conditions, the 

torque required to loosen a bolt is approximated by 

where P is bolt preload = f ( r 2 ,  o,,, % of o, ), r is bolt radius, C, = f (,u,,,,,~,.,,~~, 

thread pitch angle), and T, is the torque for the locknut. Thus, to maximize II;,,,, one 

would want to maximize P, r , C, , and T, . To maximize these, one should maximize 

the bolt diameter, yield strength, and percent of yield strength that the bolt is preloaded to, 

and maximize all coefficients of friction as well. 

Plots of CT (coefficient associated with T,,,,) and C, versus p are shown in Figs. 

6.1 and 6.2 for the bolts employed in this study. These figures provide graphical 

illustrations of the relative magnitudes and importance of CT vs. C,, thread vs. mating 

parts coefficient of friction, and use of coarse thread vs. fine thread bolts. The following 

observations can be made from these figures. 

1. The difference between CT and C, is significant with the coarse thread bolts 

showing the greatest difference. However, at large ,u values ( p  2 0.4) the 

difference between C, and C, is less than 10%. 
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2 Both C, and C,, and thus T,,,, and I;oo,., are quite sensitive to p and increase at 

a rapid rate with p .  

3. Both coefficients of fiiction ( p  ,,,e,, and p,a,n,,, ) are very important and 

contribute greatly to C, and (I, and thus T,,,, and 7;,,,, . Note that C, = p in 

Fig. 6.1 and C, z 2 . 5 , ~  in Fig. 6.2. 

4. Thread pitch makes very little difference in the values of C, and C, except in 

cases where ,u is very small, i.e., 0 < p I 0.05.  However, it should be noted that 

for the bolts in this study, the design cross-sectional areas (A) and percent 

increases in A for fine threads (relative to coarse threads) are as shown in Table 

6.1. Allowable bolt preloads will vary directly with A and thus 2 1 % and 16% 

larger preloads may be applied to 114" and 314" g5 bolts respectively. These in turn 

should increase the Losen by the same percentages. Thus, fine threaded bolts 

should significantly mitigate bolt loosening due to vibrations. 

Table 6.1 Percent Increase in Design Cross-Section 
Area for Fine Threads. 

%Increase in A 
Bolt Size Course Thread A(&) Fine Thread for Fine Threads 

Whereas Eqn. (6.1) and the above observations are based on static conditions, it is 

reasonable to assume that the design parameters which yield large values of I;,,,_,,,, will 

also yield large values of 7L0 ,, ,,,. 



Figure 6.1 C, and C, vs. p for Zero Friction Under Nutmolt Head. 



Cr Dlr'. FINE THR.) 

- COURSETHR. 
--- mTHR. 

p (BOLT THREADS & UNDER NUTBOLT HEAD) 

Figure 6.2 C, and C, vs. p for Bolt Threads and Under Nut/Bolt Head. 



6.2 Conclusions Based on Experimental Data 

Conclusions drawn from analysis of the experimental data from execution of the 

program test matrix (96 tests), the static on-torque and off-torque testing, the 

confirmation testing, and the additional factorial test matrix are presented below. 

1. The average value of p,,,, for all tests in the test matrix was 0.003. 

Recognizing that 0 2 p < I, this represents an average bolt loosening of 0.3%. 

Hence, very little loosening occurred in the vibration testing program. 

2. The numerous negative values of p,,,, indicate that parameter variability, 

noise, and experimental error were probably the main sources of A torque, and 

not bolt loosening due to vibrations. 

3. Microwelding in the 2-piece test specimens mitigate relative movement of the 

test specimen pieces at the joint and thus mitigated bolt loosening. 

4. The test data indicated that transverse loadings on the test bolts were more 

adverse to bolt loosening due to vibrations than axial loadings. 

5. The test data indicated that the locknut ("prevailing torque device") was 

superior to the plain nut at mitigating bolt loosening. This is as one would 

expect. 

6. The static torque testing results and vibration testing torque results are quite 

consistent and remarkably close to being the same in magnitude. This again 

indicated very little loss of torque or bolt loosening due to vibrations. 

7. The ANOVA analysis of the adjusted torque data indicated only two 

parameters (E & J) were significant. Regarding factor E, the locking device, a 

self-locking device produced better retention of torque than did a plain nut. 

Regarding factor J, the joint configuration, the 1-piece test specimedconcentric 

loading configuration retained more torque than did the 2-piece test 
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specimedeccentric loading configuration. These results statistically conformed 

to the predicted results in the confirmation testing. However, the actual 

difference between level 1 and level 2 from the confirmation runs was fairly 

small. 

8. The ANOVA analysis of the bolt IengtMoad data indicated four parameters (A, 

E, J, & L) and one three factor interaction (IxKxg) were significant. The 314" 

bolt (parameter A) retained a greater percentage of bolt load than did the 1/4" 

bolt. The self-locking nut (parameter E) retained a greater percentage of bolt 

load than did the plain nut. The 1-piecelconcentric load joint configuration 

(parameter J) retained a greater percentage of bolt load than did the 2- 

piece/eccentric load configuration. The mass configuration of test specimen 

only (parameter L) retained a greater percentage of bolt load than did the mass 

configuration of test specimen plus additional mass. In regards to the IxKxg 

interaction, a class 2 fit (parameter I) seemed slightly more stable against noise 

than did a class 3 fit. Class 2 and 3 fits did behave differently against vibration, 

though both were sensitive to it. These results, however, did not confirm 

against prediction in one of the two confirmation tests, so conclusions based on 

the class of fit results shodd not be trusted. 

9. As indicated in (7) and (8) above, only two sources of variation were significant 

at 95% confidence when compared to the variation between supposed identical 

samples when using the adjusted torque data and 5 sources of variation were 

significant when using the adjusted 1engtMoad data. Considering that there are 

44 sources of variation, and that the factors in the experiment were selected for 

their impact on fastener loosening, this is a very small number of sigdicant 

sources of variation. There are several reasons this might occur: 
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The response measured (torque-on vs. torque-off or bolt load initial 

vs. bolt load final) might not be affected by the parameters 

contained within the experiment. 

The values of the parameters selected were too high (or low) to 

reflect the sensitivity of bolt loosening to the parameters. 

The variation between supposedly identical samples is very large. 

The first reason stated above is not felt to be valid (however, more sensitive 

measuring instrumentation should be used in future testing). The second and 

third reason are felt to be primary causes of the very low bolt loosening activity 

and the detection of what loosening that did occur in executing the test matrix. 

These shortcomings must be addressed in fbture testing. 

10. Much higher than normal bolt preloads, lighter than normal lubrication, and 

significant degrees of microwelding (in 2-piece test specimens) all contributed 

to reduce bolt loosening activity in executing the test matrix. An example of 

the effect of microwelding was visually observed in Test 4e when early in the 

vibration testing the outer cantilever rotated approximately 10" and then 

stopped. At the end of the test the two pieces were microwelded together and 

had to be separated by force. 

1 I .  The additional testing results indicate that (a) transverse loadings are much 

more detrimental to bolt loosening than axial loads; (b) severity of vibration 

loadings have a major impact on bolt loosening; (c) larger bolts in a given 

vibration environment are more resistant to loosening than smaller bolts; and 

(d) more testing is needed to determine the effects of bolt lubrication and bolt 

preload on bolt loosening. 
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12. Measuring nut on-torque and off-torque before and after vibrations exhibited 

considerable variab'iity and bolt length measurements via micrometer were not 

sufficiently accurate. However, had considerable bolt loosening occurred in the 

testing, it would have been detected with the measurement system employed. 

The literature indicates that once relative joint rnicro-movement begins, bolt 

loosening begins and considerable to complete bolt loosening occurs in very 

short order. This simply did not happen in executing the test matrix with the 

exception of one test, Test 1 h. 

13. The experimental testing conducted answered many questions regarding bolt 

loosening, the design parameters and load parameters affecting loosening, and 

appropriate testing instrumentation, specimens and procedures to analyze the 

bolt loosening problem. However, it left many questions unanswered, and 

overall reflected a need for additional testing. 

14. Additional small scale preliminary testing using standard off-the-shelf bolts and 

nuts should be conducted to more Wly identlfy the parameters having 

sigtllficant impact on bolt loosening due to vibrations. The parameters 

observed should include both design and vibration loading parameters. 

Additionally, this preliminary testing should seek alternative test configurations 

and specimens, and a robust and sensitive bolt load monitoring/measuring 

device. 

15. Future testing should probably use steel specimens to minimize specimen 

microwelding problems. This would reduce experimental "noise" and allow 

better assessment of the effects of the design and load parameters under 

investigation. Additionally, it should provide quantitative results which are 

conservative in predicting bolt loosening on aluminum specimens. 



6.3 Recommendations 

Theoretical considerations and the literature indicate the following actions to make 

bolted joints more resistant to vibration loosening. 

1.  Maintain large friction forces 

Use a large initial bolt preload and stress bolts to a high percent of yield 

stress. 

Take reasonable measures to reduce bolt relaxation and thus reduction in 

preload. 

Have large coefficients of hction - do not lubricate threads and mating 

surfaces. 

Use large diameter bolts. 

2. Use "prevailing torque" fasteners (locknuts) 

Consider using multiple locking devices, e.g., liquid threadlock and a 

locknut. 

Consider using liquid threadlock as both an initial lubricant during bolt 

tightening and then having it serve as a locking device later in its life when 

vibrational loads are applied. 

3. Use fine threaded bolts. The primary advantage of fine threaded bolts are their 

increased area and thus increased allowable preload. Thus, take advantage of this 

and preload the bolts to high levels (say 80 percent of yield stress). 

4. Avoid transverse loadings on bolted joints where possible. These are the loadings 

that contribute most strongly to bolt loosening during vibration. 

5 .  If the joint to be fastened requires long bolts, do not hesitate to use long bolts as 

they have greater elastic strain energy stored when preloaded and will require more 
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cycles of vibration to loosen in a successive delta loosening manner. Additionally, 

longer bolts tend to bend (thus they may fatigue) rather than loosen. 

6. Consider using toothed shear washers to prevent slippage and thus bolt loosening. 

7. Avoid impact loadings and resonant loadings where possible. 

8. Introduce some form of vibration damping into the structural system and into the 

boltlnut system. Nuts with nylon inserts are good for this. 

9. Treat bolt design for loosening due to vibrations in a somewhat similar manner to 

design for fatigue loadings. That is, in fatigue design we used reduced allowable 

stresses and thus larger member sizes and number of bolts. Hence, in vibration 

loosening environments, used larger bolts and more of them than static or 

nonvibratory loads conditions would dictate. 

10. Use a "belt and suspenders" design philosophy. That is, use as many of the above 

actions as practically feasible in design situations where bolt loosening due to 

vibrations may be a problem. 

6.4 Recommendations for Future Research 

Advancement of knowledge and development of user friendly design aids and 

procedures which make use of the advancements is in general a rather slow process. The 

case of bolt loosening under vibratory loads foIlows this general pattern. 

Phase I work on this topic is reported in this publication, and has been successfbl 

in identifying the main parameters which affect bolt loosening under vibratory loadings. It 

was also successfU1 in establishing effective and efficient design of experiment procedures 

and compatible data analysis methodologies and procedures. The Phase 1 work has also 

been successfbl in developing a good research team as a resource base on which to 
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continue the evolutionary advancement and development work needed on the topic of bolt 

loosening due to vibrational loads. 

Future research work needed and recommended on this topic, and the sequence of 

that work are briefly outlined below. It is estimated that each of the additional phases 

recommended will need to be 1-year research efforts. 

6.4.1 PhaseIIWork 

Develop simple bolt loosening test set-ups at Auburn University to 

allow evaluation of the relative importance of primary design and 

loading parameters on bolt loosening. The test set-ups planned are: 

- Static Torque-Tension Set-up (will utilize ultrasonic transducer 

to determine bolt tensions) 

- Modified Kerley Vibration Set-up 

- Bolt Vibration Testing Under Operational Loads Set-up 

Utilize test set-ups above to experimentally evaluate the effects of 

the primary design parameters on bolt loosening under vibrational 

loads. 

Refine and finalize listing of design and loading parameters to carry 

forward to Phase 111. 

Develop Phase I11 Test Plan 

6.4.2 Phase 111 Work 

Refine and finalize test specimens, test procedures, and parameters 

to monitor/measure in Phase I11 testing. 
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Fabricate Phase 111 test specimens and procedure, test bolts, locking 

devices, and test/response parameter monitoring equipment. 

Execute Test Plan using MSFC shaketable and testing personnel. It 

is anticipated that an L,, orthogonal array test matrix will be 

conducted. 

Conduct any required retesting and confirmation tests. 

Conduct demonstrational experiments as appropriate. 

Conduct testing on simple test set-ups developed in Phase I1 to 

correlate results fiom those set-ups with those fiom the shaketable. 

It is anticipated that the Phase I1 test set-ups will produce accurate 

results which are compatible with those fiom the shaketable. If so, 

the Phase I1 set-up can be used more efficiently and effectively in 

hrther demonstrational and expansion of scope/applicability 

testing. 

6.4.3 PhaseIVWork 

Conduction of "missing gap" testing and expansion of scope testing 

as necessary to fill in unknowns and to expand the limits of 

applicability of the test results as appropriate. 

Conduct testing of additional bolt locking devices as appropriate. 

Develop "User Friendly" design aids and procedures as appropriate 

to assist MSFC engineers in assessing the vibrational loosening 

adequacy of bolted connections. 
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APPENDIX A 

TEST SET-UPS 



Setup 1 
Stee l  Plate (8 '  x 8 ' )  

\ Pins 

\ //,' 

/' 
Test Fastener 

\\ /-,-/ 

I " ,  

---- - 
1 

___( 

( N o t  t o  s c a l e )  

Cube 1 

Test Set-up #1 
Fixture ID 
Bolt 10 
Nut ID 
End Mass ID 

Mass Bolt ID 
Mass Nut ID 

Spacer ID 
Fastener Size 

Class of Fit 
Eccentric 

PSI 8 PS2 
114-20 UNC-2A 
1/4-20 UNC-26 
None 
None 
None . 
None 
114" diam. 

Lubrication (threads) 
Hole Tolerance 
Pre-load 
Nut Locking Device 
Grip Length 

\ ~ a s s  of Configuration 

None 
Oversize 
40% yield 
None 
0.5" 



Setup 2 
Steel Plate ( 8 '  x 8 ' )  

P i n s  
\ 
\ 1 --- 9 Test Fastener 

1 
II_ 

I 1 i 

( N o t  to  s c a l e )  

! Cube 

Test Set-up #2 
l~ixture ID Ips3 I 

I Mass Bolt ID 1  one I 

Nut ID 1/4-28 UNF-36 
End Mass ID M I  . 

Pre-load 
Nut Lockina Device 

40% yield 
None 

Grip Length 
Pitch (thdslin) 
Lubricant (mating materials) 
Class of Fit 
Joint Conf~uration 
Mass of Configuration 

1 .On 
28 
Tri-Flow 
3 
Concentric 
M I  



Setup 3 
Stee l  P la te  (8' x 8') 

\ Pins  

Test Fastener  

( N o t  to s c a l e )  

Test Set-up #3 
Fixture ID 
Bolt ID 
Nut ID 
End Mass ID 

Mass Bolt ID 
Mass Nut ID 

S~acer ID 

PS3 
1/4-20 UNC-3A 
1/4-20 UNC-3B 
M2 
None 
None 
None 



Setup 4 
Stee l  P la te  (8 '  x 8') 

\ P ins  

Test Fastener 

r- n ,MI 
r 

i 
! (No t  to sca le )  

Test Set-up #4 
Fixture ID 
Bolt ID 
Nut ID 
End Mass ID 

Mass Bolt ID 
Mass Nut ID 

Spacer ID 
Fastener Size 
Lubrication (threads) 
Hole Tolerance 
Pre-load 
Nut Locking Device 
Grip Length 
Pitch (thdg~n) 
Lubricant (mating materials) 
Class of Fit 
Joint Configuration 
Mass of Configuration 

PSI 8 PS2 
1/4-28 UNF-2A 
1/4-28 UNF-26 
M I  
3/41 6 UNF-2A 
3/4-16 UNF-26 
None 
114" diam. 
Tri-Flow 
Oversize 
40% yield 
Nylon Insert 
0.5" 
28 
Tri-Flow 
2 
Eccentric 
MPS2 + Mi 



Setup 5 
Steel Plate (8 '  x 8 ' )  

\ Pins 
1,' 

\'\\ , , 

/,- 
Test Fastener 

'\ r ? ,  

I 

i PS3 I 

I 
I M 3  
! 

I 
I 

I 
(Not  to scale) 

I 

Cube 

Test Set-UD #5 
Fixture ID 
Bolt ID 
Nut ID 

PS3 

1/4-20 UNC-2A 
1/4-20 UNC-26 

End Mass ID 
Mass Bolt ID 

M3 
None 

Pre-load 
Nut Locking Device 
Grip Length 
Pich (thdstin) 
Lubricant (mating materials) 
Class of Fit 
Joint Configuration 
Mass of Configuration 

80% yield 
Nylon Insert 
1 .Ow 
20 
Tri-Flow 
2 
Concentric 
M3 



Setup 6 
Stee l  P la te  (8 '  x 8 ' )  

\ Pins Test Fastener 

, S l  - 
PS2 

I 

I ( N o t  to  s c a l e )  

1 Cube I 
i 

Bolt ID 114-28 UNF-3A 

l ~ n d  Mass ID 1  one 1 

ispacer ID Is1 (0.5" Total) I 

Mass Boff ID 
Mass Nut ID 

l~oint Configuration IEccentric 

None 
None 

i 

l ~ a s s  of Configuration [ M P S ~  I 



Setup 7 
Steel  P late  ( 8 '  x 8 ' )  

\ Pins  
\ 
\ 

/- -7 
\ / 

/y , Test Fastener 
\, 7- 1 M4 

I 

I I 
I 

P L 3  I 
M4 

I (Not to  sca le )  
1 C u b e  

Test Set-up #7 
Fixture ID I P L ~  I 
Bolt ID 3/4-16 UNF-2A 
Nut ID 3/4-16 UNF-26 
End Mass ID 

Mass Bolt ID 

Fastener Size 1314" diam. I 

Mass Nut ID 
Spacer ID 

ILubrication (threads) 1  one I 

None 
None 

l~oint Configuration (concentric 
IMass of Configuration J M ~  I 



Setup 8 
Steel Plate (8' x 8 ' )  

\ Pins Test Fastener 

C u b e  

\ /*-- ,/,- 
, 

7 fl ,L] M 5 

1 
I 

P L2 I jM5 

Test Set-up #8 
Fixture ID ~PLI 8 PL2 I 

I 

Nut ID 3/4-16 UNF-2B 
End Mass ID M5 

P L 1 " S2 

I Mass Bolt ID 13/4-16 UNF-2A I 

I 
I 

(No t  to  scale) 

l~astener Size 1314" diam. 
I 

Mass Nut ID 
Spacer ID 

llubrication (threads) JNone 

3/4-16 UNF-2B 
S2 (1 .On Total) 

Class of Fit 12 
Joint Configuration Iconcentric 

Hole Tolerance l~ igh t  

l ~ a s s  of Configuration IMPL2 + M5 

Pre-load 
Nut Locking Device 
Grip Length 
Pitch (thds~in) 
Lubricant (mating materials) 

80% yield 
Nylon Insert 
2.0" 
16 
None 



Setup 9 
Stee l  P late  ( 8 '  x 8 ' )  

\ 
Pins 

,-7 
Test Fastener 

Cube  

(Not  to sca le )  

Test Set-up #9 
1 

Fixture ID PLI & PL2 
Bolt ID 3/41 0 UNC-3A 

314-1 0 UNC-3B 
End Mass ID 

Ispacer ID Is2 (1 .On Total) 1 

Mass Bon ID 
Mass Nut ID 

IFastener Size / 314" diam. I 

None 
None 

[Lubrication (threads)  one I 

j 

l ~ o l e  Tolerance 1 oversize I 
Pre-load 
Nut Locking Device 

40% yield 
Nylon Insert 

Joint Configuration 
Mass of Configuration 

Eccentric 
MPL2 



Setup 10 
Steel Plate (8 '  x 8 ' )  

\ Pins 

Cube 

, - 6 7  
/- 
-- Test Fastener 

,, 

"\ I I 
I 
n M6 

I 
, 

1 i 
I u P L 2  U M6 

( N o t  to scale)  

i PL1 



Setup 11 
Steel Plate (8' x 8') 

\ Pins 

, - 
Test Fastener 

1 JLM7 

(Not to scale) 
Cube 

Test Set-up #11 
Fixture ID 
Bolt ID 
Nut 10 
End Mass ID 

Mass Bolt ID 
Mass Nut ID 

Spacer ID 

I ~ a s s  of Configuration 1 ~ 7  I 

PL3 
314- 1 0 UNC-2A 
314-1 0 UNC-2B 
M7 
None 
None 
None 

Fastener Size 
Lubrication (threads) 
Hole Tolerance 
Pre-load 
Nut Locking Device 
Grip Length 
Pitch (thdslin) 
Lubricant (mating materials) 
Class of Fit 
Joint Conflauration 

314" diam. 
Tri-Flow 
Oversize 
40% yield 
None 
2.0" 
10 
None 
2 
Concentric 



Setup 12 
Steel P la te  (8 '  x 8') 

\ Pins 

Test Fastener 

LLM8 

I 
(No t  to scale) 

C u b e  I 

Fixture ID 
Bolt ID 314-1 6 UNF-3A 

3/4-16 UNF-36 
End Mass ID 

Mass Bolt ID 
Mass Nut ID 

Spacer ID 
Fastener Size 
Lubrication (threads) 
Hole Tolerance 
Pre-load 
Nut Locking Device 
Grip Length 
Pitch (thds/in) 
Lubricant (mating materials) 
Class of Fit 
Joint Configuration 
Mass of Configuration 

M8 
None 
None 
None 
314" diam. 
Tri-Flow 
Oversize 
40% yield 
Nylon Insert 
1 .Om 
16 
None 
3 
Concentric 
M8 



APPENDIX B 

FABRICATION PROCUREMENT DRAWINGS 

AND 

LISTINGS FOR TEST SPECIMENS, BOLTS, AND NUTS 
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APPENDIX C 

EXECUTION OF TEST MATRIX DATA 



Stress Chn . 

T I  
Stress Chn . 

Stress Chn . -1 7.4 

lTorq. Chng. ( 45 I 

in'lb 

1 off-torque I 55 I 

Torq. Chng. I 10 I 

in'lb 

ITorq. Chng. I 10 1 



-1 
Stress Chn 

(in) 

-1 
Stress Chn 

(n) 

I~ength Chn;. I O.O:O," 1 
Stress Chn . 

-1 
Stress Chn . 

Torq. Chng. I 35 1 

1 off-torque 1 50 I 
Torq. Chng. I 35 I 

- - -  

Forq. Chng. ] 15 1 

 or^. Chng. 1 85' I 
Total loss of preload 



(Length after torquing 1 2.2271 I 0.0025 ] 

(in) 
Test #2a 

Length before testing 

WI 
Stress Chn . 

Length after sine-sweep 
Length after burnishing 

Length after level-1 

I Test #2b 1 

i 
2.2246 

Length chng. 

2.2269 
2.2269 
2.2269 

Stress Chn . 

0.0023 
0.0023 
0.0023 

Length before testing 

Length after torquing 

Length after burnishing 
Length after level-1 

-1 
Stress Chn . 

ml 
Stress Chn . 

2.2253 
2.2275 
2.2263 
2.2262 

in'lb 

0.0022 
0.001 0 
0.0009 

- -~ 

ITorq. Chng. 1 15 1 

in'lb 

Torq. Chng. ] 20 I 

in'lb 

Torq. Chng. 1 25 I 



(in) 

I Test #2e 1 I ~ e n ~ t h  chng. 
pen@ before testing 

- 

1 2.2236 1 I 

Stress Chn . 

Length after torquing 
Length after sine-sweep 
Length after burnishing 

Length after level-1 

Wl 
Stress Chn 

(in) 

I Test #2g 1 I Length chng. 

2.2260 
2.2260 
2.2260 
2.2243 

0.0024 
0.0024 
0.0024 
0.0007 

piiK$. 1 0 . 0 7  1 
Stress Chn 

Length before testing 

Length after torquing 
Length after burnishing 
Length after level-2 

(in'lb) 

On-torque I 90 
I I 

2.2225 
2.2250 
2.2249 
2.2249 

Torq. Chng. I 25 I 

0.0025 
0.0024 
0.0024 

On-torque 1 90 
I I 

I ~ o r ~ .  Chng. I 20 I 

in'lb 

I ~ o r ~ .  Chng. ( 25 I 

l ~ e i &  ~hr~;. 0.0014 1 
Stress Chn . -37.7 

I ~ o r ~ .  Chng. I 30 1 



Stress Chn . 

(in) 
h i t I 

Test #3b 1 1 ~ength chng. 
Lenath before testina 1 1.2321 I 

Stress Chn 

Length after torquing 
Length after burnishing 
Lenath after level-1 

m1 
Stress Chn . 

1.2344 
1.2342 
1.2335 

0.0023 
0.0021 
0.0014 

(in) 

Torq. Chng. I 50 I 

Test #3d 
Lenath before testina 
Length after torquing 
Length after burnishing 
Length after level-2 

l ~ o r ~ .  Chng I 50 I 

ITorq. Chng. I 30 1 

1.2343 
1.2369 
1.2368 
1.2365 

in'lb 
Length chng. 

0.0026 
0.0025 
0.0022 

lTorq. Chng. I 30 



-1 
Stress Chn . 

(in) 

(~ength after level-1 1 1.2360 I 0.0025 ] 

Length after torquing 
Length after burnishing 

Stress Chn -1 7.4 

Length chng. Test #3f 
Length before testing 

(in) 
Test #3g 1 I ~ e n ~ t h  chng. 

1.2335 
1.2363 
1.2363 

Length before testing 1 1.2356 1 I 

0.0028 
0.0028 

I~ength after level-2 1 1.2368 1 0.0012 1 

Length after torquing 
Length after burnishing 

l ~ e n m  thy. 0.0012 1 
Stress Chn -92.8 

rength Ch:. I O.:,"il I 
Stress Chn 

1.2385 
1.2384 

in'lb 

0.0029 
0.0028 

--- - 

F o r q  Chng. I 50 I 

I ~ o r q .  Chng. 1 50 I 

in'lb 

Torq. Chng. I 40 I 

Torq. Chng. I 70 I 



I~ength Ch;. I 0.0006 
Stress Chn -52.2 

(in) 

Stress Chn . 

Stress Chn 

Length chng. 

0.001 5 
0.001 5 
0.0006 

t 
Test #4b 

1 Length before testing 
Length after torquing 
Length after burnishing 
Length after level-1 

in'lb 

1.421 5 
1.4230 
1.4230 
1.4221 

Torq. Chng. I 40 I 

in'lb) 

[Torq. Chng. I 30 I 

in'lb 
On-tor ue 

I ~ o r ~ .  Chng. 1 20 I 

I ~ o r q .  Chng. I 30 I 



(in) 

-1 
Stress Chn 

pzyzGJ 
Stress Chn 

, 
0.0021 
0.0016 

Length after burnishing 
Length after level-1 

Stress Chn 

Length chng. 

0.0016 
0.0016 

Test #4e 

Length before testing 
Length after torquing 
Length after sine-sweep 

1.4265 
1.4260 

(in) , 

1.4244 
1.4260 
1.4260 

I~ength after torquing ( 1.4310 1 0.0015 1 

Length chng. Test #4h 
Length before testing 

Length Chng. 1 0.0005 

1.4295 

in'lb 

0.0015 Length after burnishing 

lTorq. Chng. I 20' I 

1.431 0 

Outer segment of 
specimen rotated 
Approx. 10 degrees 
and then microwelded. 

Length after level-2 

Torq. Chng. I 45 I 

in'lb 

1.4300 

1Torq.Chng. I +*a . I 
l Failed to record. Nut 

did not loosen 
completefy. 

0.0005 

[Torq. Chng. I 10 I 
I Stress Chng. I -58 I 



T I  
Stress Chn . 

11 
Stress Chn 

Stress Chn . 

(in) 

(in'lb 
On-tor ue 

Test #5d 
Length before testing 
Length after torquing 

Length after burnishing 
Length after level-2 

Torq. Chng. I 40 I 

(in'lb) 

On-torque I 145 
I 

2.1 563 

2.1592 
2.1 590 
2.1590 

 or^. Chng. 1 35 1 

Length chng. 

0.0029 

0.0027 
0.0027 

in'lb 
On-tor ue 

 or^. Chng. I 30 I 

I ~ o r q .  Chng. I 35 I 



mj 
Stress Chn . 

Stress Chn . E 

in'lb 

Torq. Chng. 1 40 I 

Torq. Chng. 1 45 I 

 or^. Chng. I 45 I 

Length Chn . 0.0047 
l s K d - 7 - 1  

I ~ o r ~ .  Chng. I 30 1 



l~ength after burnishing 1 2.2358 I 0.0061 1 

(in) - 

I ~ e n ~ t h  after level-1 1 2.2358 I 0.0061 I 

Test #6a 

Length before testing 

Length after torquing 
Length after sine-sweep 

Stress Chn 

(in) 
1 1 1 1 

2.2297 
2.2358 
2.2358 

Test #6b I 1 Length chng. 

Lenath before testina 1 2.2264 I 

Length chng. 

0.0061 
0.0061 

Length after torquing 

Length after burnishing 

Lenath after level-1 

l~ength after level-2 1 2.2315 I 0.0008 I 

(in) 

Test #6d Len th chn . 
Len before testin 2.2248 
Len after tor uin 2.2299 0.0051 

2.231 8 
2.2306 
2.2299 

1 

Test #6c 

Length before testing 
Length after torquing 

Length after burnishing 

l~ength after burnishing 1 2.2273 1 0.0025 1 

0.0054 
0.0042 
0.0035 

I~enath after level-2 1 2.2270 1 0.0022 1 

2.2307 
2.2360 
2.2360 

in'lb) 

Length chng. 

0.0053 
0.0053 

Torq.Chng. 1 .** I 
Failed to record. 

Nut did not loosen 
completely. 

I ~o rq .  Chng. I 50 I 

I ~ o r ~ .  Chng. 1 50 I 



piGy=J 
Stress Chn . 

-1 
Stress Chn 

-1 
Stress Chn . 

(in) , 
I 

Stress Chn -37.7 

in'lb 

I ~ o r ~ .  Chng. I 30 1 

in'lb 

l ~ o r q .  Chng. I 50 I 

(in'lb) I 

On-torque I 130 
1 

Torq. Chng. 1 35 I 

in'lb 

Torq. Chng. I 45 I 



I Test #7a 1 I~ength chng. 
(~ength before testing 1 3.1668 1 I 

[~ength after burnishing 1 3.1695 1 0.0027 1 

Length after torquing 

Length after sine-sweep 

I~enath after level-1 1 3.1690 1 0.0022 1 

Stress Chn -14.5 

3.1695 
3.1695 

(in) 

0.0027 
0.0027 

Test #7b 
Lenath before testina 

Length chng.1 0.0026 

Length after torquing 
Length after burnishing 
Length after level-1 

(stress Chng. I -29 I 

3.1710 

Test #7c 
Len h before testin 3.1706 

after tor uin 3.1 730 0.0024 
after bumishin 3.1730 0.0024 

Length chng. 

3.1746 
3.1746 
3.1 736 

I Length after level-2 1 3.1723 1 0.0017 1 

0.0036 
0.0036 
0.0026 

Stress Chn . -20.3 

I Test #7d 1 

I ~ength after level-2 1 3.1758 1 -0.0002 

Length before testing 
Length after torquing 
Lenath after burnishina 

Wl 
Stress Chn 

I~o rq .  Chng. I 20 I 

3.1760 
3.1 758 
3.1758 

I ~ o r q .  Chng. I 40 1 

-0.0002 
-0.0002 

 or^. Chng. I 5 5 I 



T{ 
Stress Chn . 

(in) 

I Test #7f 1 l ~ e n ~ t h  chng. 

I~ength after level-I 1 3.1728 1 0.0003 1 

Length before testing 

Length after torquing 
Length after burnishing 

-1 
Stress Chn 

3.1 725 
3.1737 
3.1728 

0.0012 
0.0003 

(in) 

1-1 
Stress Chn 

Length after burnishing 
Length after level-2 

(in) 

I Test #7h 1 [ ~ e n ~ t h  chng. 

Length chng. 

-0.0002 

1 

Test #7g 
Length before testing 
Length after torquing 

3.1720 
3.1718 
3.1718 
3.1715 

-0.0002 
-0.0005 

Length before testing 
Length after torquing 

Stress Chn . 

Length after burnishing 
Length after level-2 

I ~ o r ~ .  Chng. I 25 I 

3.1725 
3.1 720 

I ~ o r ~ .  Chng. I 25 I 

-0.0005 

3.1744 
3.1741 

I ~ o r ~ .  Chng. I 20 I 

0.0019 
0.0016 



mj 
Stress Chn 

Stress Chn 21.75 

(in) 

-1 
Stress Chn 

Stress Chn . 

Length chng. 

-0.001 5 
-0.0007 
0.0008 

Test #8b 
Length before testing 
Length after torquing 
Length after burnishing 
Length after level-1 

I ~ o r q .  Chng. I 35 1 

4.1 560 
4.1 545 
4.1 553 
4.1568 

I ~ o r ~ .  Chng. I 40 I 

I ~ o r ~ .  Chng. I 2 5 



p y T z g  
Stress Chn 

Stress Chn 

Test #8g 1 I ~ e n ~ t h  chng. 
Length before testing 1 4.1510 1 I 
Length after torquing 1 4.1535 1 0.0025 1 

Stress Chn -33.35 

Length after burnishing 
Length after level-2 

Stress Chn -14.5 

I~orq.  Chng. I 40 I 

4.1570 
4.1547 

 or^. Chng. I 35 I 

0.0060 
0.0037 

I~orq .  Chng. I 45 1 

Torq. Chng. I 30 I 



1 7 1  
Stress Chn . 

m- 
Stress Chn 

Stress Chn . -14.5 

Stress Chn 

I ~ o r q .  Chng. I 25 I 

ITorq. Chng. I 15 1 

ITorq. Chng. I 25 1 

I ~ o r q .  Chng. I +.. • 1 
+ Failed to record. 
Nut did not loosen 

completely. 



(in) 

I Test #9e 1 [~ength chng I 
Length before testing 

Length after torquing 
Length after sine-sweep 

TI 
Stress Chn 

- 

Test #9f 
before testin 4.1955 

Len after tor uin 4.2020 0.0065 

4.2045 
4.2100 
4.2098 

Length after burnishing 
Length after level-1 

Length after burnishing 4.1 975 0.0020 
Length after level-1 4.1 975 0.0020 

7 

0.0055 
0.0053 

l~ength Chng. I 0.0020 I 

4.2098 
4.2098 

(stress Chng. 1 0 

0.0053 
0.0053 

(in) 

I Test #9g 1 1~en~t.h chng. I - 
Length before testing 4.2064 
Length after torquing 4.21 15 0.0051 
Length after burnishing 4.2115 0.0051 
Length after level-2 4.21 15 0.0051 

l~ength Chng. 1 0.0051 I 

I~o rq .  Chng. I 10 I 

l ~ o r ~ .  Chng. I **. I 
Failed to record. 

Nut did not loosen 

completely. 

L ~ o r ~ .  Chng. I 10 I 
1 stress Chng. I 0 

(in) 

I Test #9h 1 I~ength chng. 
I~ength before testing 1 4.2128 1 I (Wlb) 

Torq. Chng. I 35 I 
Stress Chn 

Length after torquing 

Length after burnishing 
Length after level-2 

4.2165 
4.2163 
4.2163 

0.0037 
0.0035 
0.0035 



Wl 
Stress Chn . 

Test #1 Ob 

Lenath before testina 

-1 
Stress Chn . 

Length after torquing 
Length after burnishing 

,Length after level-1 

T I  
Stress Chn . 

3.4760 

(in) 

Length chng. 

3.4870 
3.4870 
3.4830 

0.01 10 
0.01 10 
0.0070 

Length after torquing 1 3.4860 1 0.0060 

Test #I Od 
Len& before testina 

l~ength after burnishing 1 3.4860 1 0.0060 1 
I Lencrth after level-2 1 3.4840 1 0.0040 1 

3.4800 

-1 
Stress Chn . 

Length chng. 

(ft'lb 

Torq. Chng. I 40 I 

I ~ o r q .  Chng. I 30 I 

 or^. Chng. I 55 I 

Torq. Chng. I 75 I 



(n) 
Test # I  Oe I I ~ e n ~ t h  chng. 

[~ength after sine-sweep I 3.4840 1 0.0075 I 

Length before testing 
Length after torquing 

Stress Chn 

3.4765 
3.4840 

- 

(in) 

I Test #1 Of 1 ( ~ e n ~ t h  chng. 

0.0075 

Length after burnishing 
Length after level-1 

3.4800 
3.4800 

Length before testing 
Length after torquing 

l~ength Chng. 1 -0.0080 1 

0.0035 
0.0035 

Length after burnishing 
Length after level-1 

, (in) , 
1 i 

3.4830 
3.5070 0.0240 

3.4785 
3.4750 

-0.0045 
-0.0080 

Test #1 Og 
Length before testing 

I Length after level-2 1 3.4850 I 0.0045 1 

- 

Length Chng. 1 0.0045 

3.4805 
Length after torquing 
Length after burnishing 

Istress Chng. ( 0 I 

Length chng. 

(in) 
Test #1 Oh I (~ength chng. I 

3.4850 
3.4850 

- 
-. 

Length after torquing 3.4800 -0.0045 

0.0045 
0.0045 

l ~ e n m  ch;. 1 O.OIOO 1 
Stress Chn . 362.5 

Length after burnishing 
Length after level-2 

 or^. Chng. I 35 I 

(ft'lb 
On-tor ue 

3.4820 
3.4945 

I ~ o r ~ .  Chng. I 40 I 

-0.0025 
0.0100 

Torq. Chng. I 40 I 

On-torque 1 180 
I I 

Torq. Chng. I 35 1 



Stress Chn . -11.6 

Stress Chn -1 1.6 

T I  
Stress Chn 

Torq. Chng. 1 40 I 

Torq. Chng. I 45 I 

I ~ o r ~ .  Chng. I 35 I 

1 ~ o r ~ .  Chng. 1 35 I 



W{ 
Stress Chn 

(in) 

l~ength after level-1 I 4.1569 1 0.0048 1 

Test #l1 f 
Length before testing 
Length after torquing 
Length after burnishing 

W I  
Stress Chn 

4.1569 1 0.0048 
4.1569 1 0.0048 

(Length after level-2 1 4.1729 1 0.0024 1 

4.1521 

, 

l~ength Ch:. I 0.0024 I 
Stress Chn -1 1.6 

Length chng. 

Torq. Chng. I 40 I 

I 
off-torque 1 90 

Torq. Chng. I 35 I 

(Wlb) 
I 

Torq. Chng. I 35 J 



(in) 

I Test #12a 1 I~ength chng. 
1~enat.h before testina 1 3.4225 1 I 

I~ength Ch;. I 0.0:34 I 
Stress Chn . 

Length after torquing 
Length after sine-sweep 
Length after burnishing 
Length after level-1 

7 

I~enath Chno. 1 0.0030 1 
Istress Chng. I 0 I 

3.4259 
3.4259 
3.4259 
3.4259 

(in) 
I 4 b i 

0.0034 
0.0034 
0.0034 
0.0034 

Test #12c 1 1 Length chng. 
Lenath before testina 1 3.4220 1 

On-torque I 115 
I I 

Torq. Chng. I 15 I 

On-torque I 115 
I 

Length after torquing 
Length after burnishing 
Length after level2 

W I  
Stress Chn 

(in) 

Test #12d I I~ength chng. 

3.4268 
3.4268 
3.4268 

0.0048 
0.0048 
0.0048 

piiGfpq 
Stress Chn . 

Length before testing 

Length after torquing 
Length after burnishing 
Length after level-2 

Torq. Chng. I 15 1 

3.4463 
3.4500 
3.4500 
3.4500 

0.0037 
0.0037 
0.0037 



(in) 

I Test #I  2e 1 I~ength chng. 

I~ength after sine-sweep 1 3.4405 1 0.0039 1 

Length before testing 
Length after torquing 

Stress Chn 

3.4366 
3.4405 

Length after burnishing 
Length after level-1 

W I  
Stress Chn 

0.0039 

Wl 
Stress Chn 

3.4405 
3.4405 

Test #12h 
before testin 3.4326 
after tor uin 3.4359 0.0033 

0.0039 
0.0039 

Stress Chn 

Length after burnishing 

l ~ o r q .  Chng. I 10 1 

l ~ o r ~ .  Chng. I 15 I 

,Length after level-2 3.4358 0.0032 , 
3.4359 

 or^. Chng. 1 15 I 

0.0033 

I ~ o r q .  Chng. 1 15 I 



APPENDIX D 

STATIC ON-TORQUE VS . OFF-TORQUE DATA 



Test #1 bolt 

Test #2 bolt 

. 
Rep. # 

1 
2 
3 

Test #3 bolt 

Off-Torque 
65 
65 
65 
65 

Avg . 
Off-Toque 

62 
62 
6 5 

Bolt 1 
On-Torque 

85 
85 
85 

Rep. # 
1 
2 
3 

Test #4 bolt 

Avg.= 

Bolt 3 
On-Torque 

95 
9 5 
95 

Off-Torque 
60 
55 
60 

Bolt 1 
On-Torque 

95 
95 
95 

Rep. # 
1 
2 

Test #5 bolt 

58 

Off-Torque 
80 
75 
75 
77 Avg.= 

Rep. # 
1 
2 
3 

65 

Bolt 2 
On-Torque 

85 
85 
85 

Avg . 
Off-Torque 

7 5 
73 
7 8 

Off-Torque 
70 
75 
80 

Avg . 
Off-Torque 

97 
95 

Bolt 1 
On-Torque 

150 
150 

Off-Torque 
90 
95 

75 

Bolt 1 
On-Torque 

100 
100 
100 

Off-Torque 
60 
65 
70 

7 5 

Bolt 2 
On-Toque 

9 5 
9 5 
9 5 

Off-Toque 
100 
95 

Bolt 3 
On-Torque 

150 
150 

Avg.= 

Rep. # 
1 
2 
3 

Bolt 3 
On-Torque 

85 
85 
85 

Off-Torque 
7 5 
70 
80 

Bolt 2 
On-Torque 

150 
150 

Off-Torque 
100 
95 

Off-Torque 
80 
75 
80 

Off-Torque 
110 
100 
95 
102 

78 

Bolt 1 
On-Torque 

150 
150 
150 

Avg . 
Off-Torque 

102 
97 
100 

Bolt 2 
On-Torque 

100 
100 
100 

Avg.=, 

80 

Off-Torque 
95 
95 
105 

88 

Off-Torque 
80 
80 
80 

98 98 

Bolt 2 
On-Torque 

150 
150 
150 

Bolt 3 
On-Toque 

100 
100 
100 

Off-Toque 
100 
95 
100 

Off-Torque 
8 5 
90 
90 

Bolt 3 
On-Toque 

150 
150 
150 

Avg . 
Off-Torque 

82 
82 
83 



Test #6 bolt 

Test #7 bolt 

Test #8 bolt 

Off-Toque 
110 
110 
115 

1 112 , 

Rep. # 
1 
2 
3 

Avg . 
Off-Torque 

115 
115 
110 

Off-Torque 
105 
110 
110 
108 

Test #9 bolt 

Bolt 3 
On-Torque 

150 
150 
150 

Bolt 1 
On-Toque 

150 
150 
150 

Off-Torque 
150 
150 
155 
1 52 

Bolt 3 
On-Torque 

180 
180 
180 

A v ~ . =  

Avg . 
Off-Torque 

150 
152 
157 

Off-Torque 
145 
150 
150 
148 

' 

Test #lo bolt 

120 

Off-Toque 
130 
125 
105 

Rep. # 
1 
2 
3 

Bolt 2 
On-Torque 

150 
150 
150 

Off-Torque 
155 
155 
165 
158 

Bolt 1 
On-Torque 

180 
180 
180 

Bolt 3 
On-Toque 

1 80 
180 
180 

Rep. # 
1 
2 
3 

Bolt 2 
On-Torque 

180 
180 
180 

Avg.= 

150 Avg.= 

Bolt 1 
On-Torque 

180 
180 
180 

Off-Torque 
95 
100 
95 

L 97 

Rep. # 
1 
2 
3 

Off-Toque 
145 
160 
145 

Off-Torque 
130 
135 
145 

Off-Toque 
130 
145 
160 

Avg . 
Off-Torque 

1 02 
100 
105 A 

Bolt 1 
On-Torque 

135 
135 
135 

Rep. # 
1 
2 
3 

Avg. 
Off-Torque 

135 
147 
150 

145 

Bolt 2 
On-Toque 

180 
180 
180 

Bolt 3 
On-Torque 

135 
135 
135 

A v ~ . =  

Off-Toque 
100 
95 
105 
100 - 

Bolt 3 
On-Toque 

180 
180 
180 

137 

Bolt 1 
On-Torque 

180 
180 
180 

Bolt 2 
On-Torque 

135 
135 
135 

Avg.= 

Off-Toque 
150 
145 
145 
147 

Off-Torque 
110 
105 
115 

L 110 

Off-Toque 
130 
130 
140 

Avg . 
Off-Torque 

142 
138 
142 

133 142 

Bolt 2 
On-Torque 

180 
180 
180 

Off-Torque 
145 
140 
140 



Test #11 bolt 

Test #12 bolt 

Rep. # 
1 
2 
3 

Notes: 1. All toque values shown for Test #1 - #6 are in in*lb. 
2. All torque values shown for Test #7 - #12 are in ft'lb. 

Bolt 1 
On-Torque 

125 
125 
125 

Rep. # 
1 
2 
3 

Bolt 2 
On-Torque 

125 
125 
125 

Off-Torque 
100 
90 
95 

Avg.= 

Off-Torque 
90 
95 
105 
97 

Bolt 1 
On-Torque 

115 
115 
11 5 

92 95 

Avg.= 

88 

Off-Torque 
100 
90 
85 

Bolt 2 
On-Torque 

115 
115 
115 

Bolt 3 
On-Torque 

125 
125 
125 

Bolt 3 
On-Toque 

115 
115 
115 

Off-Torque 
100 
9 5 
9 5 
97 

Off-Torque 
85 
90 
90 

Off-Torque 
100 
95 
100 
98 

Avg . 
Off-Torque 

95 
90 
90 

Avg . 
Off-Torque 

97 
95 
100 



APPENDIX E 

CONFIRMATION TEST DATA 



Confirmation Test #I 

CTest#l a 
before testin 3.4369 

3.4381 0.0012 
l~ength after burnishing 1 3.4380 1 0.001 1 I I Length after level-1 1 3.4388 1 0.0019 1 

-1 
Stress Chn . 

Stress Chn . 

(in) 

Static Testina: 

(Wlb) 

Length chng. 

0.0036 
0.0034 
0.0006 

CTest#l b 
Length before testing 
Length after torquing 
Length after burnishing 
Lenath after level-1 

Static Testing: r 180 I 155 I 

3.4379 
3.441 5 
3.441 3 
3.4385 

~ i f f l  25 1 

(W lb) , 1 

I ~ o r ~ .  Chng. I 45 1 
Static Testing: . 



Confirmation Test #2 

CTest#2a 
before testin 1.51 08 
after tor uin 1.5153 0.0045 

-1 
Stress Chn 

Length after burnishing 
Length after level-1 

l~ength after torquing 1 1.5164 ( 0.0030 1 

1.51 53 
1.51 35 

(in) 

0.0045 
0.0027 

-1 
Stress Chn 

Length chng. CTesWb 
Length before testing 

Length after burnishing 
Length after level-1 

(in) 

I CTest#2c 1 I ~ e n ~ t h  chng . 

F 
1.51 34 

1.5164 
1.51 58 

I~ength Chng. ( 0.0050 1 

0.0030 
0.0024 

Length before testing 

Length after torquing 
Length after burnishing 
Length after level-1 

istress Chng. I 0 I 

I~englhCh;.! 0.0~31 1 
Stress Chn . 

1.51 58 
1.5208 
1.5208 
1.5208 

(in'lb) 

0.0050 
0.0050 
0.0050 A 

 or^. Chng. I 35 I 
Static Testing: 

90 I 70 I 
~iff l  20 1 

(in'lb) 
I , 

Static Testing: , , 

I ~ o r q .  Chng. I 20 I 
[Static :osting: iz , 

Diff 

Static Testing: 

90 
Diff 

75 
15 



APPENDIX F 

ADDITIONAL TEST DATA 



Additional Test #1 

ATest #1 a Stress chn . 

Load after tor uin 1 1,300 
Load after level-2 12,200 

 or^. Chng. [ 15 I 

I ~ o r q .  Chng. I 30 1 

Additional Test #2 

ATest #2a (psi) 1-1 
Load after tor uin 22,200 
Load after level-2 25,900 3,700 

ATest #2b 
Load after tor uin 

Load after level-2 -26,700 

I ~ o r ~ .  Chng. I 45 1 

Torq. Chng. I 60 



Additional Test #3 

I ATest #3b 1 (psi) I Stress chng. 1 

ATest #3a 
Load after torquing 
Load after level-2 

in'lb (psi) 
12,000 

0 

Load after torquing 
Load after level-2 

I ~ o r q .  Chng. I 30 I 

Stress chng. 

-12,000 

ITorq. Chng. I 30 I 

1 2,400 
0 

Additional Test #4 

-1 2,400 

I ~ o r q .  Chng. 1 15 I 

[ ~ o a d  after level-2 I 0 1 -22,500 1 

ATest #4b 

Load after torquing 

(in'lb) 

~n-torque 1 70 
I I 

ITorq. Chng. I 70 I 

(psi) 
22,500 

Stress chng. 



Additional Test #5 

l ~ o a d  after torquing 1 12,200 1 1 
l ~ o a d  after level-2 I 0 1 -12.200 1 

(ft'lb) 
I . 

Torq. Chng. I 5 I 

(ft'lb) 

On-torque I 8 
I 

Torq. Chng. 1 8 J 

Additional Test #6 

I ATest #6a 1 (psi) I Stress chng. I 
l ~ o a d  after torquing 1 24,500 1 I 
l ~ o a d  after level-2 1 16,700 1 -7,800 1 

Torq. Chng. 1 40 I 

I I ATest #6b 
1 ~ o a d  after torquing 1 25,400 1 J 
l ~ o a d  after level-2 1 17.800 1 -7.600 1 

(ft'lb) 
On-torque 1 70 

I 

I ~ o r q .  Chng. I 20 



Additional Test #7 

ATest #7a 

Load after level-2 1,700 

 or^. Chng. I 10 J 

Torq. Chng. I 5 I 

Additional Test #8 

l ~ o a d  after level-2 1 ..* I **' I 

1 ATest #8b 1 (psi) I Stress chng . I 

Stress chng. ATest #8a 
Load after torquing 

(psi) 
*** 

Torq. Chng. I 0 1 

Load after torquing 
Load after level-2 

24,500 
30,000 5,500 




