Abstract

The PARADIGM compiler project provides an automated means to parallelize programs, written in a serial programming model, for efficient execution on distributed-memory multicomputers. A previous implementation of the compiler based on the PTD representation allowed symbolic array sizes, affine loop bounds and array subscripts, and variable number of processors, provided that arrays were single- or multi-dimensionally block distributed. The techniques presented here extend the compiler to also accept multi-dimensional cyclic and block-cyclic distributions within a uniform symbolic framework. These extensions demand more sophisticated symbolic manipulation capabilities. A novel aspect of our approach is to meet this demand by interfacing PARADIGM with a powerful off-the-shelf symbolic package, Mathematica™. This paper describes some of the Mathematica™ routines that performs various transformations, shows how they are invoked and used by the compiler to overcome the new challenges, and presents experimental results for code involving cyclic and block-cyclic arrays as evidence of the feasibility of the approach.

1 Introduction

Distributed-memory multicomputers offer significant advantages over shared-memory multiprocessors in terms of cost and scalability. Unfortunately, extracting all the computational power from these machines requires users to write efficient software for them, which is a laborious process. One major reason for this difficulty is the absence of a global address space. As a result, the programmer has to distribute code and data across processors and manage communication among tasks explicitly.

Permission to make digital/hard copies of all or part of this material without fee is granted provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication and its date appear, and notice is given that copyright is by permission of the Association for Computing Machinery, Inc. (ACM). To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or fee.

This research was supported in part by the Office of Naval Research under Contract N00014-91-J-1096, by the National Aeronautics and Space Administration under Contract NASA NAG 1-613, and in part by an IBM fellowship and a Fulbright/MEC fellowship. We are also grateful to the Argonne National Lab for providing access to their machines.

Mathematica and MathLink are registered trademarks of Wolfram Research, Inc. Maple is a registered trademark of Waterloo Maple Software, Inc.
are implemented using stable and wide-spread tools like yacc and lex instead of being built from scratch, we argue that many parallelizing compilers in the future, in particular research prototypes developed in academic environments, will rely on off-the-shelf symbolic packages for most of their symbolic manipulations. Several reasons account for this:

- New compilers are required to perform increasingly complex symbolic tasks [9, 15, 22].
- As compiler algorithms become more complex, there is a need to focus more on their designs rather than on their implementation details.
- Many powerful symbolic packages are readily available (e.g., Mathematica, Maple), and some provide external interfaces (e.g., MathLink) with reasonable performance and robustness.

Clearly, the performance is not comparable with a C implementation optimized for special cases, but compilation time has not been a major problem in our experience. Furthermore, it is not a good practice to fully tune compiler features until their impact on optimizing real codes has been tested [8]. The approach presented in this paper allows quick prototyping and testing of new algorithms with real programs. Once the effectiveness of an algorithm is verified, then the critical features affecting efficiency and compilation time can be identified and rewritten in C.

The rest of this paper is organized as follows. Section 2 describes some of the Mathematica packages that we have written to meet the symbolic demands of the compiler. Section 3 shows how PARADIGM performs computation partitioning and communication generation by building inequality expressions from the source program and passing them to the Fourier-Motzkin package in Mathematica to obtain necessary symbolic expressions. Some results for two programs involving cyclic and block-cyclic array distributions, respectively, appear in Section 4. Finally, concluding remarks are made in Section 5.

2 Mathematica Tools in PARADIGM

This section describes a set of tools that we have built using Mathematica and shows how PARADIGM, which uses an internal representation based on Parafrase-2, is interfaced to Mathematica via MathLink. These tools are the result of only three man-months and represent roughly 1000 lines of Mathematica code and 700 lines of C code. The key to this quick turnaround is the extensive use of built-in Mathematica functionality as well as public domain Mathematica packages.

2.1 Linking PARADIGM with Mathematica

An overview of the interactions between PARADIGM and Mathematica is shown in Figure 2. This follows a typical client/server model in which the server (Mathematica) waits for a "symbolic request," processes it, and returns the result to the client. Both run as separate UNIX processes and communicate with each other using MathLink. The underlying communication mechanism can be either UNIX pipes, when they are running on the same machine, or TCP/IP sockets for remote execution.

Efficient forward and reverse conversion routines transfer data between PARADIGM's internal representation (based on Parafrase-2) and Mathematica expressions (P2ToMath and MathToP2 in the figure). Conversion time is kept to a minimum using several techniques:

- The structure of the expression is never lost. We use MathLink API function calls to send and receive a tokenized stream.
- Variable names are transformed so that they encode a pointer to the symbol table. This eliminates symbol table look-ups when expressions return from Mathematica.
- Mathematica also pre-processes the result (PreMathToP2 in the figure) so that functions have the correct number of arguments and easy-to-decode names following a preset convention.

An Example: Simplifying Loop Bounds To illustrate the interactions between PARADIGM and Mathematica we use a simple example, namely the simplification of loop bounds. After certain loop transformations, such as loop normalization, bound expressions can become very complex, and in particular, when arrays with multiple levels of indirection are involved, it is difficult for conventional compilers to "clean up the mess."

Figure 3 shows our solution to this problem using Mathematica. The PARADIGM process first opens a connection with the Mathematica process and then traverses the hierarchical representation of the loop nest and finds the lower and upper bound expressions. Each of these expressions is transformed into a Mathematica expression using P2ToMath, and a Mathematica built-in function, Simplify, is applied to them.
Symbolic implementation takes hardly 100 lines of Mathematica and, of particular importance to us, loop transformations including data dependence testing [19], inter-procedural analysis [7], and automatic generation of communication for multicomputers [2, 3].

The Fourier-Motzkin method solves systems of linear inequalities with real variables using an elimination method. In the context of compilers, it has important applications, including data dependence testing [19], inter-procedural analysis and, of particular importance to us, loop transformations [7] and automatic generation of communication for multicomputers [2, 3].

Our implementation quite closely follows the algorithm described by U. Banerjee [6] but also includes some of the conditions stated by M. Ancourt [4] to ensure that the integer projection is the same as the real projection. A fully symbolic implementation takes hardly 100 lines of Mathematica code, making extensive use of built-in functionality. Symbolic comparisons at every stage of the elimination process significantly reduce the number of redundant constraints and improve performance. This is particularly efficient when the compiler can provide information about the signs of symbolic constants, which is usually the case.

2.2 Symbolic Fourier-Motzkin Elimination (FME)

The Fourier-Motzkin method solves systems of linear inequalities with real variables using an elimination method. In the context of compilers, it has important applications, including data dependence testing [19], inter-procedural analysis and, of particular importance to us, loop transformations [7] and automatic generation of communication for multicomputers [2, 3].

Our implementation quite closely follows the algorithm described by U. Banerjee [6] but also includes some of the conditions stated by M. Ancourt [4] to ensure that the integer projection is the same as the real projection. A fully symbolic implementation takes hardly 100 lines of Mathematica code, making extensive use of built-in functionality. Symbolic comparisons at every stage of the elimination process significantly reduce the number of redundant constraints and improve performance. This is particularly efficient when the compiler can provide information about the signs of symbolic constants, which is usually the case. Other redundant constraints are eliminated using traditional methods [4].

To improve the quality of the output of our implementation of FME, we have extended the built-in simplification rules of Mathematica, providing extensive support for floor, ceiling, min and max operations. In particular, declaring unknown symbolic variables as integer and using the fact that integers are closed under certain operations (+, −, ×), we can eliminate many unnecessary floor and ceiling operations. In addition, using a public domain package, expressions like \(\frac{3a + 4b + 1}{3} \) can be determined as non-negative if \(a \) and \(b \) are first declared to be non-negative. This is used to eliminate operands in min and max operations by just subtracting operands and checking non-negativity of the result.

Since our compiler uses FME extensively to find various iteration sets (as will be described in Section 3), we shall briefly explain its interface. Its input consists of a set of inequalities \(Z \) and a set of variables \(V \). The order of elimination of the variables in \(V \) is from the innermost to the outermost loop. Therefore, after elimination, a variable will only depend on enclosing loop variables. Thus, the solution set \(R \) that is returned consists of loop bounds for each variable in \(V \). These loop bounds can be used to scan the polytope defined by the original set of inequalities \(Z \).

2.3 Loop Transformations

The functionality of a loop transformation pass is split between the PARADIGM process and the Mathematica process in the following way: the PARADIGM process identifies the loops involved in the transformation, checks that the transformation requested is valid using the data dependence and control flow graphs, establishes a connection with the Mathematica process, and sends it the relevant portions of the loop such as the loop bounds, array subscripts, and/or the entire loop body. The Mathematica process computes the new loop bounds after the transformation and a set of replacement rules to map the old loop variables into the new ones. It then returns the new loop bounds and loop body after applying the replacement rules. The PARADIGM process converts the results back into its internal representation.

Loop Normalization Loop normalization is typically performed as a pre-pass of the compiler analysis and reduces the lower bounds and strides to one. PARADIGM requests this transformation whenever the loop stride is not one. The implementation is trivial in Mathematica using built-in replacement and simplification rules. Note that affine subscripts and loop bounds remain affine after loop normalization.

Unimodular Loop Transformations Unimodular loop transformations provide a uniform view to many important transformations [6] (e.g., loop interchange, loop skewing, and loop reversal) and are a powerful tool to increase parallelism [7] and/or locality [23]. A unimodular loop transformation is described by a unimodular matrix, which is an integer matrix with a determinant of \(±1 \). In our Mathematica implementation, unimodular matrices are allowed to have symbolic terms. In particular, the unimodularity of a symbolic matrix is verified before its inverse is computed using built-in functions. Then, the corresponding loop transformations are applied to a set of loops by computing the new loop variables with the inverse unimodular matrix, generating a set of inequalities from the loop bounds and the new loop variables, and finally applying FME to obtain the new loop bounds. Roughly 20 lines of Mathematica code in addition to the Fourier-Motzkin package were required for performing unimodular loop transformations.

Redundant Access Elimination Transformations The method to be described in Section 3.2 to generate communication does not ensure that each element of an array is only transmitted once. Based on the early work of Gallivan et al [13], later refined by Ancourt [4], we can obtain a new set of loops that access each element at most once. The main idea behind this transformation is the decomposition...
of the integer matrix that describes the access pattern into the product of other matrices with special characteristics. In our implementation, we used a Mathematica package to obtain the Smith Normal Form and Hermite Column or Row Form of a matrix. Then, we can use the unimodular package described above to compute the new loop bounds. Currently PARADIGM is not taking advantage of this transformation, but it will in the near future.

2.4 Other Tools of Interest

In this section we briefly describe some other Mathematica tools that we have written that are useful in other areas of the compilation process.

Integer Area Estimation For applications like automatic data partitioning [14] or static buffer allocation it is crucial to have compile-time estimates of computation and/or communication requirements. Good estimates require the computation of the integer volume of a polyhedron, but this is in general too complex. Fortunately, in most practical cases we only need an estimate of this volume, and heuristics like the one proposed in [1] are sufficient. We have a preliminary 2-D implementation to estimate the integer area, which extends the work in [1] by handling affine loop bounds. The integer area is approximated by the "real" area plus half the points in the boundary. Using a Mathematica package, we obtain all the vertices of the polyhedron from the loop inequalities. Then, using built-in functionality, the vertices are ordered clockwise and the "real" area is obtained through triangulation. Finally, the perimeter is computed by applying the GCD rule to consecutive points.

We can also apply this method in cases when symbolic terms only scale the polyhedron without changing its shape. In that case, we instantiate the symbolic terms for several values, compute the integer area with the previous method for each instantiation, and obtain an interpolating polynomial with the symbolic variable for these values using built-in functionality.

In cases where symbolic terms change the shape of the polyhedron, we can apply FME to obtain a bounding box as described in [4]. Assuming an n-dimensional space and using FME to project n - 1 dimensions, we can obtain real bounds for the remaining dimension. Rotating the dimensions and repeating this process we can compute bounds for every dimension.

We are currently working on extensions to handle more than two dimensions and symbolic terms more effectively.

Graphic Visualization The built-in plotting functions in Mathematica are used to visualize iteration space and array access patterns in two or three dimensions. By merging plots for different processors (using different colors for each), the sets for a particular communication or the load distribution after partitioning a computation can be shown. Masks in plotting functions can be used to represent non-convex regions or filter certain types of points. By combining these plotting functions with FME, any convex set defined by linear inequalities can be visualized. This tool proved to be invaluable for debugging the compiler.

C++ Code Generation We have extended Mathematica’s capabilities to output structured C/C++ loops, conditionals, local declarations, and function headers and calls from Mathematica expressions. Together with the built-in function Splice and a template file, it is relatively easy to generate simple C++ code. We are using this capability to generate inspector code for irregular problems and link it with PARADIGM’s irregular run-time support library, PILLAR [18].

3 Compilation Techniques

This section will explain how PARADIGM compiles a loop nest containing computations on regularly distributed arrays. The arrays are allowed to have an arbitrary number of dimensions, each of which can have a block, cyclic, or block-cyclic distribution, or be replicated along a processor dimension, or be sequentialized on a single processor. The array subscripts and loop bounds are allowed to be affine functions of index variables of enclosing loops. Because of the symbolic nature of the approach, the number of processors need not be specified at compile time, allowing the resulting program to execute on an arbitrarily sized system. For simplicity, global references are not translated into local address spaces and, therefore, arrays are not scaled down as more processors are used. We are currently looking for an efficient way that can handle this local translation effectively and uniformly for all supported array distributions.

The data distribution and alignment of each array dimension is either automatically generated by PARADIGM [14] or provided by the user through standard HPF directives. Given the data distributions, the compiler still must carry out two major tasks, namely the partitioning of the computation across processors and the generation of communication code to transfer data among processors. How the compiler performs these tasks is the main focus of this section.

3.1 Computation Partitioning

The key to the symbolic analyses and transformations required for both of the aforementioned tasks is the use of the Mathematica tools described previously. The symbolic FME package is the main engine used to generate various iteration sets for different data access patterns.

To exploit parallelism in the source program, a compiler must somehow distribute computations across processors. PARADIGM partitions loops using the owner computes rule: a processor p only executes those iterations for which the left-hand side (lhs) array reference of an assignment statement is local to (owned by) p. Since determining ownership for each access at run time is prohibitively costly, the compiler, through a process called loop bounds reduction [16], derives new loop bounds confined to only p’s local iterations. This is to say that the new loop must only traverse the ACCESS set [22] of the lhs reference. Consider the loop:

\[
\begin{align*}
do & \ i = L, U \\
& \ A(2i + 3) \\
\end{align*}
\]

where \(A(i)\) is block distributed on \(P\) processors indexed by \(p\), \(0 \leq p \leq P - 1\). By definition, \(\text{ACCESS}(A(s)), p\) is the set of all iterations \(i\) such that \(A(s(i))\) is stored in \(p\). This set is obtained from the polytope \(P\) returned by FME when
called with the inequalities \(I \) constraining the loop variable \(i \), which is also the polytope's only axis variable in this example (\(\forall = i \)). Two types of inequalities can be distinguished: loop inequalities and data inequalities. The former arises from loop bounds and specifies constraints on the loop variables and the relationships among them, while the latter is due to data distribution and describes the relationships between processor coordinates and subscript functions (hence loop variables, unless the subscript is a constant). In this example,

\[
L \leq i \leq U \\
bp + i \leq 2i + 3 \\
bp + i + b - 1
\]

where \(b = \lceil \frac{\text{dim}}{\text{p}} \rceil \) is the block size of distribution. FME returns:

\[
\mathcal{R} = \left\{ \left[\max \left(L, \frac{-3 + i + bp}{2} \right) \right] \leq i \leq \right. \\
\left. \left. \left[\min \left(U, \frac{-4 + b + i + bp}{2} \right) \right] \right\}
\]

= \text{ACCESS}(A(s(i)), p)

The symbolic capabilities of Mathematica allow FME to treat \(b, p, P, L, U, i \) as literals, producing expressions that are parameterized by them, which have many advantages:

- The same code runs on every processor \(p \), regardless of its location in the mesh.
- The number of processors (\(P \)) in the mesh need not be known at compile time.
- The values of the loop bounds, \(L \) and \(U \), may be input at run time.
- The array bounds, \(l \) and \(u \), need not be compile-time constants.

The same framework applies to block-cyclic distributions. An array with a block-cyclic distribution with block size \(b \) (written cyclic(\(b \)) can be viewed as a 2-D \(b \times N \) array on each processor \(p \), where \(N = \lceil \frac{\text{dim}}{\text{p}} \rceil + 1 \) is the number of blocks that \(p \) has. The blocks are enumerated with a block number \(n \), \(0 \leq n \leq N - 1 \), and the heads of any two consecutive blocks of the same processor are at a distance \(bP \) apart. The \(n \)th block in \(p \) therefore contains elements from \(bp + i + bnP \) to \(bp + i + b - 1 \).

3. For the same loop as before, the input to FME becomes:

\[
\mathcal{R} = \left\{ \left[\max \left(L, \frac{-3 + i + bp}{2} \right) \right] \left[\min \left(U, \frac{-4 + b + i + bp}{2} \right) \right] \right\}
\]

= \text{ACCESS}(A(s(i)), p)

Once \(\mathcal{R} \) is found, \(\text{ACCESS}(A(s(i)), p) \) is simply the set of \(i \)'s in \(\mathcal{R} \). A purely cyclic distribution is just cyclic(\(b \)), so this case is covered by setting \(b = 1 \) in the above expressions. These results easily extend to multi-dimensional arrays distributed on multi-dimensional processor meshes.

Some special cases are worth mentioning. If an array dimension \(A(..., l : u,...) \) is replicated, then its data inequality is \(l \leq s(i) \leq u \) and involves no processor indices. If an entire array dimension is sequentialized (or collapsed) on a particular processor \(r \), then instead of a data inequality, the mask "IF \(p = r \) THEN" is applied to the ACCESS set.

To perform loop bounds reduction, PARADIGM just needs to extract the loop inequalities from the the original loop bounds and the data inequalities corresponding to the \(lha \) reference and its distribution, and send them to FME. Then, it uses the polytope returned to construct the new loop.

Using the previous results for the ACCESS set of a block distributed array \(A \), the sequential loop:

\[
doi = L, U \\
A(2i + 3) = \ldots \\
end \text{do}
\]

becomes:

\[
p = \text{myp}() \\
b = \lceil \frac{\text{dim}}{\text{p}} \rceil \\
doi = \left[\min \left(L, \frac{-3 + i + bp}{2} \right) \right] \\
A(2i + 3) = \ldots \\
end \text{do}
\]

after loop bounds reduction, where \(\text{myp}() \) returns the processor's index in the mesh. Similarly, for a cyclic(\(b \)) distribution the new loop is:

\[
p = \text{myp}() \\
doi = \left[\min \left(L, \frac{-3 + i + bp}{2} \right) \right] \\
A(2i + 3) = \ldots \\
end \text{do}
\]

When there are multiple \(lha \) array references, a conservative union \(\mathcal{U} \) of their ACCESS sets is used to form the reduced loop bounds, while each assignment statement is masked with the corresponding ACCESS set of its \(lha \). For example, in the following loop:

\[
doi = L, U \\
A(2i + 3) = \ldots \\
B(i - 1) = \ldots \\
end \text{do}
\]

let both \(A \) and \(B \) have a block-cyclic distribution, and let their ACCESS sets be \(\{ L_{A} \leq n \leq U_{A}, L_{A} \leq i \leq U_{A} \} \) and \(\{ L_{B} \leq n \leq U_{B}, L_{B} \leq i \leq U_{B} \} \), respectively. Their union is:

\[
\mathcal{U} = \left\{ \min(L_{A}, L_{B}) \leq n \leq \min(U_{A}, U_{B}) \right\} \\
\min(L_{A}, L_{B}) \leq i \leq \max(U_{A}, U_{B}) \}
\]

and so the loop becomes:
Since block and cyclic distributions are special cases of block-cyclic, this method works for all types of regular
distributions. In particular, if some of the Ihs terms are
block distributed, then before finding their ACCESS sets,
they are first cast into a block-cyclic form by adding a
bnP term to the bounds in their data inequality, and adding
an extra data inequality, 0 < n < 0. However, if all of the
Ihs terms are block distributed, then this transformation is
not necessary.

3.2 Communication Generation

If a processor p does not own all of the elements of a right-
hand side (rhs) array reference R required by a statement
that it executes, then this data must be sent from its owner,
say q, to p via inter-processor communication. To reduce
communication overheads, array elements can be combined
into a single larger message instead of being communicated
individually. This optimization is generally known as mes-
sage vectorization [16].

The approach is the basically similar to the work of An-
court [4] which describes regions requiring communication
using a set of linear inequalities and generates loops to scan
these regions through a Fourier-Motzkin projection. Depend-
ence analysis done by Parafrase-2 is used to determine the
communication point, which is the outermost loop at which
the combining can be applied.

Therefore, the main role of the compiler is to obtain rel-
vant linear inequalities from the loop bounds, data decom-
positions, and array references in the source program, send
these inequalities to FME, and from its results generate the
scanning loops to pack/send and receive/unpack, and insert
this code at the communication point.

The set of iterations for which a processor p must receive
elements of a rhs reference R from its owner processor q is
called the COMM set of R, denoted COMM(R,p,q) (In previ-
sous work [22], this was referred to separately as the SEND set
of q and the RECEIVE set of p). To obtain the COMM set, the
inequalities I needed are the loop inequalities9, the data in-
equalities (parameterized by p) of the Ihs reference, and the
data inequalities (parameterized by q) of the rhs reference R.
The resulting polytope R is used to both pack/send data
(by setting q =mpy()) and receive/unpack data (by setting
p =mpy()).

This process is demonstrated using the HPF program in
Figure 4. The processor grid is a P1 x P2 mesh\(^\text{a}\) (hence
0 \leq p1 \leq P1 - 1 and 0 \leq p2 \leq P2 - 1). The Ihs array
A is distributed by cyclic(5) on the first mesh dimension
and sequentialized (p2 = 0) on the second mesh dimension;
i.e., only the processors whose second coordinate p2 is 0 will
own parts of A. The first dimension of the rhs array B is
distributed by cyclic(3) on the first mesh dimension, while the
second array dimension is cyclic(7) on the second mesh
dimension.

First, the compiler uses data dependence analysis to de-
termine that communication can take place outside the en-
tire loop nest. Then, it calls FME with inequalities derived
from the loop (as explained below), and extracts the COMM
set from the solution R returned to construct the commu-
nication code to pack/send and receive/unpack data. The
input sent to FME is:

\[
\begin{align*}
I & = \{ 0 &+ 0 \leq n \leq \lfloor \frac{120-1-3m}{34}\rfloor, \\
& & 5p1 + 1 + 5 + 4n \leq 4i + 5 \leq \\
& & 5p1 + 1 + 5 + 4n + 5 - 1 \} \\
V & = n, m1, m2, i, j
\end{align*}
\]

The loop inequalities come directly from the loop bounds.
A pair of data inequalities comes from each of the three array
dimensions involved (one from Ihs and two from rhs); each
pair consists of an inequality bounding the block number
and one bounding the subscript function. The block num-
bers for the Ihs are m1 and m2, respectively. Since the rhs
determines the sender (q1, q2), the processor coordinates involved in these inequalities
are q1 and q2. Similarly, the block number for the Ihs is
n, and the processor coordinate involved is only p1 because the Ihs determines the receiver (p1, p2) and A is distributed
only along the first processor dimension. Although p2 is
not involved in the inequalities, the compiler takes into ac-
count the fact that only processors with coordinate p2 = 0
own parts of the Ihs and hence are potential receivers, and
generates code accordingly (shown in Figure 5). The loops

\[
\begin{align*}
\text{do } n & = \min(L_{n1}, L_{n2}), \max(U_{n1}, U_{n2}) \\
\text{do } i & = \min(L_{i1}, L_{i2}), \max(U_{i1}, U_{i2}) \\
& \quad \text{if } (L_{i1} \leq n \leq U_{i1}) \text{ and } (L_{i2} \leq i \leq U_{i2}) \text{ then} \\
& \quad \quad A(2i + 3) = \ldots \\
& \quad \text{end if} \\
& \quad \text{if } (L_{n2} \leq n \leq U_{n2}) \text{ and } (L_{i2} \leq i \leq U_{i2}) \text{ then} \\
& \quad \quad B(i - 1) = \ldots \\
& \quad \text{end if} \\
\end{align*}
\]
{PACK/SEND phase: processor \((q_1, q_2)\)

sends to processor \((p_1, p_2 = 0)\)

\[q_1 = \text{myp}_1() \]
\[q_2 = \text{myp}_2() \]
\[p_2 = 0 \]

do 20 \(p_1 = 0, P_1 - 1 \)
if \((p_1 \neq q_1) \) or \((p_2 \neq q_2) \) then

len = 0

do 10 \(n = \text{ceiling}(\text{max}(0, \text{real}(4 - 5p_1 + 4q_1)/(5P_1), \text{real}(16 - 35p_1 + 24q_1 + 28q_2)/(35P_1), \text{real}(48 - 35q_1 + 28q_2)/(35P_1), \text{real}(16 - 15p_1 + 28q_1)/(15P_1), \text{real}(12 - 5q_1)/(5P_1))) \)

floor(min(\text{real}(3356 - 15p_1- 112q_2)/(15P_1), \text{real}(164 - 5p_1)/(5P_1), \text{real}(236 - 5p_1 - 4q_2)/(5P_1), \text{real}(114 - 5q_1 - 4p_2)/(15P_1), \text{real}(284 - 5p_1 - 17q_2)/(5P_1), \text{real}(844 - 5p_1 - 35q_2)/(28P_2))) \)

len = len + 1

10 continue

send(msgid(5\(i\),g\(2\)), buffer, len*4, (\(p_1\),\(p_2\)))
end if

20 continue

\{RECEIVE/UNPACK phase: processor \((p_1, p_2 = 0)\)

receives from processor \((q_1, q_2)\)

\[p_1 = \text{myp}_1() \]
\[p_2 = \text{myp}_2() \]

if \((p_2 = 0) \) then

do 40 \(q_1 = 0, P_1 - 1 \)
if \((p_1 \neq q_1) \) or \((p_2 \neq q_2) \) then

len = 0

recv(msgid(q\(1\),q\(2\)), buffer, BUFFERSIZE)

do 30 \(n = \text{ceiling}(\text{max}(0, \text{real}(4 - 5p_1 + 4q_1)/(5P_1), \text{real}(16 - 35p_1 + 24q_1 + 28q_2)/(35P_1), \text{real}(48 - 35q_1 + 28q_2)/(35P_1), \text{real}(16 - 15p_1 + 28q_1)/(15P_1), \text{real}(12 - 5q_1)/(5P_1))) \)

\(i = \text{ceiling}(\text{max}(0, \text{real}(4 - 5p_1 + 4q_1)/(5P_1), \text{real}(16 - 35p_1 + 24q_1 + 28q_2)/(35P_1), \text{real}(48 - 35q_1 + 28q_2)/(35P_1), \text{real}(16 - 15p_1 + 28q_1)/(15P_1), \text{real}(12 - 5q_1)/(5P_1))) \)

\(j = \text{ceiling}(\text{max}(0, \text{real}(4 - 5p_1 + 4q_1)/(5P_1), \text{real}(16 - 35p_1 + 24q_1 + 28q_2)/(35P_1), \text{real}(48 - 35q_1 + 28q_2)/(35P_1), \text{real}(16 - 15p_1 + 28q_1)/(15P_1), \text{real}(12 - 5q_1)/(5P_1))) \)

buffer(len) = 5(\(2i + j - 1, 3i - 2j - 1\), \(3i - 2j - 1\))

len = len + 1

30 continue

end if

40 continue

end if

\{EXECUTION phase\}

if \((p_2 = 0) \) then

\(i = \text{ceiling}(\text{max}(0, \text{real}(4 - 5p_1 + 4q_1)/(5P_1), \text{real}(16 - 35p_1 + 24q_1 + 28q_2)/(35P_1), \text{real}(48 - 35q_1 + 28q_2)/(35P_1), \text{real}(16 - 15p_1 + 28q_1)/(15P_1), \text{real}(12 - 5q_1)/(5P_1))) \)

\(j = \text{ceiling}(\text{max}(0, \text{real}(4 - 5p_1 + 4q_1)/(5P_1), \text{real}(16 - 35p_1 + 24q_1 + 28q_2)/(35P_1), \text{real}(48 - 35q_1 + 28q_2)/(35P_1), \text{real}(16 - 15p_1 + 28q_1)/(15P_1), \text{real}(12 - 5q_1)/(5P_1))) \)

\(A(4i + 5) = B(2i + j - 1, 3i - 2j + 1) \)

50 continue

end if

\}

Figure 5: SPMD Code for the Example Loop
in the receive/unpack phase have the same bound expressions as those in the pack/send phase, since both come from the same polytope. Therefore, we have only included their abbreviated bound expressions along with the variables of which these expressions are functions. The figure also includes the execution phase, which is the result of the loop bounds reduction procedure described previously.

In this example, the communication code essentially traverses the entire processor space since the program has an all-to-many communication pattern. However, the communication pattern is often not as complicated. For example, many stencil computations exhibit one-to-one (shift) communication patterns when their arrays are properly aligned. In such cases, it is useful to find receiving and sending processor sets. Then, the send phase only has to scan through the receiving processor set instead of the entire processor space. Similarly, the receive phase only scans through the sending processor set for candidate senders. The sending processor set can be found simultaneously with the COMM set in a single invocation to FME. To do this, FME is called with the same input that we used to find the COMM set as before, but with two additions. A processor inequality \(0 \leq q \leq P-1\) is added to \(\mathcal{I}\), and the variable \(q\) is prepended to the list \(\mathcal{V}\), as \(q\) is now the first polytope axis. Note that this set is parameterized by the receiver \(p\). The same steps can be followed to find the receiving processor set; simply replace \(q\) by \(p\) and proceed as before. Similarly, this set is parameterized by the sender \(q\).

4 Results

Two small scientific programs, LU and POTENG, were compiled using the techniques described in the previous sections. The communication generation is not fully integrated with the rest of the compiler yet, so we manually added the communication code generated by Mathematica. LU is a standard LU matrix factorization code, and POTENG computes the potential energy in the molecular dynamic simulation program (MDG) of the Perfect Benchmarks [20]. These programs were chosen because cyclic or block-cyclic distributions are required to obtain reasonable performance. Both programs were run on an IBM SP-2 using MPIF [12].

LU has three 1024 x 1024 2-D arrays, two distributed in a column-cyclic manner (\(U\) and the input matrix) while the other one (\(L\)) in a row-cyclic manner. The computation consists mainly of two doubly-nested loops (one for \(L\) and the other for \(U\)), both enclosed in an outermost loop. In each iteration of the outermost loop the program computes a column of \(L\) and a row of \(U\), where \(L\) and \(U\) are triangular matrices. Both operations are performed in parallel and with reasonable load balance due to the cyclic distributions. Communication occurs outside the doubly-nested loops but inside the outermost loop. The communication pattern involves a broadcast of a row and a column in each iteration of the outermost loop. The broadcast initiator, the size of the broadcast message, and the number of receiving processes depend on the outermost iteration. This makes it difficult to identify the broadcast. The speedup for up to 32 processors is shown in Figure 6. We can see in this figure that it is critical to identify the communication pattern as a broadcast, and therefore be able to use a MPI collective communication primitive instead of point-to-point communication. We are currently extending the high-level communication detection features of PARADIGM to handle such cases.

POTENG has six 1-D arrays, three of size \(N\), where \(N\) is the number of molecules to be simulated; and the other three of size \(3N\), where \(3\) is the number of atoms in a water molecule. A cyclic distribution is selected for the first three arrays while a cyclic(3) distribution (i.e., block-cyclic with block size of 3) for the second.

This subroutine has two main loops. The first one has statements of the form:

\[
\text{double precision } x(3N), \; zm(N), \; c1, \; c2 \\
\text{do } i = 1, N \\
\quad zm(i) = c1 \cdot x(3i-1) + c2 \cdot (x(3i-2) + x(3i)) \\
\quad \{\text{similar computations with } ym \text{ and } zm\} \\
\]

while the second one is a computationally intensive triangular loop. The cyclic(3) distribution becomes a natural choice to satisfy both communication and load balancing requirements (in agreement with the decision made by PARADIGM's automatic data partitioner [14]).

Prerequisite steps for the parallelization of the triangular loop are the following:

- Inlining three small subroutine calls.
- Fairly complex induction variable elimination.
- Array privatization of five small arrays.
- Detecting two simple reductions.

In our case we used the induction variable elimination of Parafrase-2 and manually performed the other steps. All of these steps are automatically performed by the Polaris compiler [8].

Communication operations generated by PARADIGM were combined outside the triangular loop, and reductions were performed using MPI collective communication primitives. Figure 7 plots the speedup for \(N = 3000\) for up to 32 processors. The encouraging speedup shown in the figure is a good indication that the distributions chosen are correct and that our compilation techniques are effective.
5 Conclusions and Future Work

The techniques presented in this paper allow PARADIGM to deal with all of the common regular data decompositions (block, cyclic, and block-cyclic) within a unified framework. By leveraging off the symbolic power of existing packages like Mathematica, PARADIGM has immediate access to symbolic capabilities that ultimately allows a much wider range of compilable programs than was possible before.

The work presented does not translate global references to the local address space of a processor; we are working on better ways to handle local translations uniformly for any of the supported data distributions. We are also extending previous work [14] on automatic detection of high-level communication to handle more complicated cases such as that encountered in LU.

References

