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DESIGN AND PERFORMANCE CALCULATIONS OF A PROPELLER

FOR VERH HIGH ALTITUDE FLIGHT

by

LISA DANIELLE KOCH

ABSTRACT

Reported here is a design study of a propeller for a vehicle capable of subsonic

flight in Earth’s stratosphere.  All propellers presented were required to absorb 63.4

kW (85 hp) at 25.9 km (85,000 ft) while aircraft cruise velocity was maintained at

Mach 0.40. To produce the final design, classic momentum and blade-element theories

were combined with two and three-dimensional results from the Advanced Ducted

Propfan Analysis Code (ADPAC), a numerical Navier-Stokes analysis code.

The Eppler 387 airfoil was used for each of the constant section propeller

designs compared.  Experimental data from the Langley Low-Turbulence Pressure

Tunnel was used in the strip theory design and analysis programs written.  The

experimental data was also used to validate ADPAC at a Reynolds numbers of 60,000

and a Mach number of 0.20.  Experimental and calculated surface pressure coefficients

are compared for a range of angles of attack.

Since low Reynolds number transonic experimental data was unavailable,

ADPAC was used to generate two-dimensional section performance predictions for

Reynolds numbers of 60,000 and 100,000 and Mach numbers ranging from 0.45 to



0.75.   Surface pressure coefficients are presented for selected angles of attack, in

addition to the variation of lift and drag coefficients at each flow condition.

A three-dimensional model of the final design was made which ADPAC used

to calculated propeller performance.  ADPAC performance predictions were compared

with strip-theory calculations at design point.  Propeller efficiency predicted by

ADPAC was within 1.5%  of that calculated by strip theory methods, although

ADPAC predictions of thrust, power, and torque coefficients were approximately 5%

lower than the strip theory results.  Simplifying assumptions made in the strip theory

account for the differences seen.
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NOMENCLATURE

a = speed of sound

c = chord

Cd = drag coefficient  = D/(qS)

Cl = lift coefficient = L/(qS)
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CP = power coefficient = P/(ρn3d5)

CQ = torque coefficient = Q/(ρn2d5)

CT = thrust coefficient = T/(ρn2d4)

d = diameter

D = drag

e = specific stored energy

J = advance ratio = V/(nd)

L = lift

M = Mach number = V/a

n = rotational speed

P = power

q = dynamic pressure = 0.5ρV2

Q = torque

r = radius



Rtip = tip radius

S = wing area

T = thrust

u = x component of velocity

v = y component of velocity

V = freestream velocity

w = z component of velocity

x = chordwise distance

y = distance from airfoil surface

y+ = dimensionless distance = (y/ν)(τwall/ρ)0.5

α = angle of attack

β = twist angle

η = efficiency = (CT*J)/CP

µ = dynamic viscosity

ν = kinematic viscosity

ρ = density

τwall = shear stress at the wall



1

CHAPTER 1--INTRODUCTION

Background

Concern for the environment and determination to overcome a new challenge

can make very high altitude subsonic flight possible.  Driven by the needs of the

atmospheric research community, a remotely piloted vehicle capable of flying

subsonically in the stratosphere is being developed by a consortium of federal,

industrial, and academic partners under NASA’s Environmental Research Aircraft and

Sensor Technology (ERAST) program.

In-situ measurements at altitudes between 24.4 km (80,000 ft) and 30.5 km

(100,000 ft) are needed to further our understanding of  the dynamics and chemistry of

Earth’s atmosphere.  These measurements would augment laboratory research, data

from samples of the lower stratosphere taken by the ER-2 aircraft, and measurements

from satellites and balloons.  A better fundamental understanding of the atmosphere

can help us to make more responsible decisions in the way we choose to live, work,

and travel.

Undeniably, development of a suitable propulsion system is the most

formidable challenge.  Currently, there are no existing propulsion systems capable of

meeting either the program’s near term altitude goal of  25.3 km (83,000 ft) or

ultimate goal of  30.5 km (100,000 ft).  Studies summarized by the ERAST program’s

Leadership Team ( Ref. 1) suggest that the near term goal may be met by either a

modified gas turbine power plant or a turbocharged reciprocating combustion engine.
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Non-airbreathing or hybrid systems are the most likely candidates for propelling an

aircraft to the ultimate altitude goal.

For many of the conceptual aircraft being considered, power produced is

transferred to thrust by a propeller.  Presented here is an aerodynamic design study of

a propeller to meet the near term ERAST vehicle requirements using the most readily

available computational tools, design and analysis methods,  and experimental data.

Strip-theory design and analysis methods are used with two and three-dimensional

results from the Advanced Ducted Propfan Analysis Code-Version 7 (ADPAC), a

numerical Navier-Stokes analysis code,  to develop a propeller design.
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Propeller Requirements

Design is an iterative process.  It begins with a carefully chosen set of

requirements that are based on the best results of any conceptual or experimental

studies done.  The propeller requirements in Table 1 have been derived from the Near-

Term ERAST mission requirements shown in Table 2 and the expected propulsion

system performance (Ref. 1).

Table 1.  Propeller Requirements

Altitude 25.9 km
(85,000 ft)

Power 63.4  kW
(85 hp)

Maximum Relative Mach Number 0.80
Cruise Mach Number 0.40

Table 2. ERAST Mission Requirements

Mission Near-Term Goal
(1998 - 2000)

Long-Term Goal
(2000 +)

Mission altitude 25.3  km
(83,000 ft)

30.5  km
(100,000 ft)

Operational Radius 1000 km
(539 nmi)

4000 km
(2160 nmi)

Payload weight 150 kg
(330 lbm)

225 kg
(496 lbm)

Payload accommodations Access to undisturbed free stream
Airspeed range 0.40 < M < 0.85

Operational Constraints Can operate in moderate turbulence
Operation in ambient air temperatures to -100° C

Crosswind Capability Takeoff and landing in moderate crosswinds
 (minimum 15 knots)

Deployment To remote base of operations at airfields worldwide
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Overview of the Design and Analysis Methods Used

Having a firm set of requirements, the designer must then decide upon a

method to meet them. The steps taken to arrive at the final design presented in this

thesis are briefly described below.  Each step will be discussed in depth in the chapters

to follow.

Step 1.  The Eppler 387 airfoil was chosen for the constant section propeller blade.

While this airfoil was considerably thicker than those typically used for propeller

sections, it was selected because it was known to have good performance at low

Reynolds numbers.  Experimental lift and drag data that could be used in the strip-

theory programs, as well as the surface static pressure data that could be used to

validate ADPAC was available for this airfoil.

Step 2.  A grid study was conducted to determine an acceptable computational mesh

density for the two-dimensional ADPAC performance calculations of the Eppler 387

airfoil.  Having identified an appropriate mesh, ADPAC was validated by comparing

calculated surface pressure coefficients to experimental pressure coefficients for  a

range of angles of attack.

Step 3.  A strip-theory design program was written based on the procedures described

by Adkins and Liebeck (Ref. 2).  The low Reynolds number, low Mach number
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experimental data from the Eppler 387 were incorporated into the program and a

series of propellers were designed.

Step 4.   The ADPAC code was used to calculate two-dimensional airfoil section

performance for higher Mach numbers since no experimental data were found for this

regime.  The Reynolds number-Mach number combinations were identified by the

results of Step 3.

Step 5.  The results from Step 4 were incorporated into the strip-theory design and

analysis codes.  Another set of propellers was designed, examined and compared to

arrive at the final geometry.  Off design performance calculations were made for the

final propeller design with the strip-theory analysis program.

Step 6.  A three-dimensional computational mesh for the final propeller design was

made, and ADPAC was used to make a three-dimensional performance prediction.

The ADPAC result was compared to the strip-theory result at the design point.
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CHAPTER 2

Selection of Airfoil and Airfoil Performance Data

The propeller designer’s most critical decisions lie in the selection of blade

airfoil sections and airfoil performance data.  Accuracy of a propeller design or

analysis conducted using strip theory methods will be compromised if any variation of

airfoil performance with Reynolds number and Mach number is not taken into account.

While the designer may be aided by modern numerical design and analysis programs,

results cannot be used with any confidence until calculated performance is in good

agreement with experimental data.

With the renewed interest in high altitude remotely piloted vehicles, sailplanes,

and wind energy conversion, much research has been done to gain a better

understanding of the behavior of steady and unsteady, two and three dimensional

subsonic flows at low Reynolds numbers.  Low Reynolds numbers are those below

106, as defined by Mueller in Reference 3, since the unpredictiblity of the boundary

layer and the effects of laminar separation and reattachment play an important role in

this regime. Results of this research has led to the development of many computational

tools to design and analyze airfoils in this regime.  Even so, behavior of the laminar

boundary layer is still not completely understood and measurement and modelling of

the boundary layer over airfoils at low Reynolds numbers still presents a challenge

(Ref. 3).

For subsonic flows, the laminar boundary layer over an airfoil at low Reynolds

number has been observed to behave in three different patterns as reported in
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Reference 3.  The laminar boundary layer may either transition naturally to a turbulent

boundary layer, may fully separate from the airfoil surface, or may separate and

reattach to the airfoil surface forming a laminar separation bubble.

Performance is best if the laminar boundary layer naturally transitions to a

turbulent boundary layer before reaching the adverse pressure gradient.  With

increased energy, the turbulent boundary layer is able to withstand the adverse

pressure gradient and the flow will be able to stay attached to the airfoil surface much

longer yielding good lift and drag characteristics.

Full separation results in a severe performance degradation. The airfoil will

stall at high angles of attack when the laminar boundary layer completely separates

from the airfoil surface near the leading edge.  Full separation can also occur at lower

angles of attack if the laminar boundary layer is unable to overcome an adverse

pressure gradient.

A separation bubble is formed when the laminar boundary layer, unable to

overcome an adverse pressure gradient, separates but then reattaches to the airfoil

surface after transitioning to turbulent.  Typically, the laminar shear layer will begin

transitioning immediately downstream of the separation point.  The separated turbulent

shear layer will then grow quickly entraining flow from the free stream until it

reattaches to the airfoil surface. Within the bubble is a region of slow moving reversed

flow with the center of the vortex lying near the reattachment point.   The airfoil

surface pressure remains nearly constant across the bubble region and increases rapidly

near the point where the flow reattaches.
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The length of the separation bubble depends upon how rapidly the laminar

shear layer is able to transition.  Generally, separation bubbles will lengthen as chord

Reynolds number is decreased. While not always clearly seen, increasing free stream

turbulence levels, airfoil surface roughness, and employing boundary layer tripping

devices have usually been effective in shortening the laminar separation bubble and

improving airfoil performance (Ref. 3).  Increasing the adverse pressure gradient has

also been seen to reduce the length of the separation bubble by reducing the time

needed for transition (Ref. 4).

Preliminary studies showed that at an altitude of 25.9 km (85,000 ft) propeller

blade Reynolds numbers could vary from 50,000 to 200,000 while relative free-stream

Mach numbers could range from 0.40 to the design limit of 0.80.  No experimental

data was found for this transonic low Reynolds number regime.  Experimental results

were found for an Eppler 387 airfoil that had been tested at the Langley Low-

Turbulence Pressure Tunnel (LTPT) at Reynolds numbers of 60,000 to 460,000 and a

Mach number range of 0.03 to 0.13 (Ref. 5).  Because of the high quality of the

experimental data, and the availability of airfoil surface pressure, lift, and drag

coefficients at each angle of attack, the Eppler 387 airfoil was chosen over other

airfoils with known good performance at low Reynolds numbers for the constant

section propeller.  This section is much thicker than the transonic airfoils normally

chosen for propellers tip sections. The simplification of one airfoil for the entire blade

was made for academic purposes only, simplifying programming and modelling.
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The variation of the lift and drag coefficients for the Eppler 387 measured at

the Langley LTPT for Reynolds numbers of 60,000, 100,000 and 200,000 are shown

in Figures 1 and 2.  At a Reynolds number of 60,000, laminar separation was not

always observed to be followed by turbulent reattachment. This phenomenon can be

seen in Figure 1, as the airfoil stalls around α = 3.00° and the boundary layer did not

reattach until an angle of attack of 7.50°.  In fact, both phenomena, separation with

and without reattachment, were observed at an angle of attack of 4.00°.   The

measurement techniques used were not able to resolve the unsteady nature of the flow

at this Reynolds number.  This behavior may result from short separation bubbles

bursting, although further experimentation would be needed to prove this.  McGhee,

Walker, and Millard observed no hysteresis loops for this airfoil in the Langley LTPT

in a set of experiments designed to study hysteresis effects for Reynolds numbers from

60,000 to 300,000.

Figures 3 through 5 show the variation of pressure coefficients on the airfoil

surface for Reynolds numbers ranging from 60,000 to 200,000 for an angle of attack

of 8.00°.  From these figures and others reported in Reference 5, surface pressure

measurements and oil flow visualization techniques showed that the length of the

separation bubble decreased as Reynolds number was increased.  Oil flow visualization

indicated that the boundary layer naturally transitioned for a Reynolds number of

200,000 and α = 8.00°.
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The Eppler 387 has been tested in several other facilities and the data from the

Langley Low-Turbulence Pressure Tunnel have been used to validate numerous airfoil

design and analysis codes.  Comparisons of these results shed light on the many

challenges still faced.  Reference 5 presents experimental results from tests of two

dimensional models of the Eppler 387 in the Low Turbulence Wind Tunnel at Delft

and the Model Wind Tunnel at Stuttgart.  As reported in Reference 5 and seen again in

Figures 6 through 11 , observations at Langley for a Reynolds number of 60,000 were

confirmed in tests of an Eppler 387 section in the Low Turbulence Wind Tunnel at

Delft, but not by tests in the Model Wind Tunnel at Stuttgart.  Reasons for these

discrepancies are still unknown but have been associated with differences in tunnel

turbulence levels, model quality, model mounting configurations, and force

measurement methods.

The Eppler-Somers code (Ref. 5) and Drela’s XFOIL and ISES codes (Ref. 6,

7) are among the design and analysis codes that have been validated with the Eppler

387 data taken at Langley.  The XFOIL and ISES codes use an inviscid/viscous

interaction technique while the Eppler-Somers code couples complex mapping,

potential flow and boundary layer techniques together to solve for the flow field

around an airfoil.   General agreement between the calculated and experimental results

was good for each of these codes, although agreement degraded as Reynolds number

decreased. This degradation is inherent to the technique used since as Reynolds

number decreases and the boundary layer thickens the interaction between the inviscid

and viscous region gets stronger and the boundary layer approximations become less
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accurate (Ref. 8).  At Reynolds numbers above 100,000 these codes are practical

design tools because they can solve for an airfoil’s performance quickly.
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CHAPTER 3

Grid Study and ADPAC Validation

ADPAC is a three-dimensional time-marching Euler/Navier-Stokes analysis

code that was originally developed to enable researchers to study the effects of

compressor casing and endwall treatments (Ref. 9).  The code is flexible enough to

allow it to be used for analysis applications other than compressors.  ADPAC gains

much of its flexibility from the use of a multiple-block grid system.  This feature is

helpful when studying complicated geometries where it may not be possible to create a

single structured grid of the flowfield.  The multiple-block grid system allows one to

create different grids for different areas of the flowfield.  Special commands are

provided to allow the different blocks to communicate with each other.

While the code had been validated for several turbomachinery and non-

turbomachinery applications, ADPAC was unvalidated in the regime of interest for the

ERAST propeller.  The two-dimensional Eppler 387 experimental data from the

Langley LTPT were used for this validation.

The first task at hand was to conduct a grid study.  The purpose of the grid

study is to identify the minimum computational mesh density for which a solution is

independent of the number of grid points.  For subsonic low Reynolds number flows,

the grid must be sufficiently dense to resolve the boundary layer and any separation

bubbles formed.  Several ‘C’ grids of the flow field around the Eppler 387 geometry

were created. Measured coordinates from the Langley pressure model of the airfoil

were used.  The “Level 4” grid was the most dense with 58,277 grid points.  The
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“Level 3” grid had 23,409 points, and the “Level 2” grid had 5,945 points.   Each grid

extended ten chordlengths upstream, downstream, above, and below the blade. The

minimum acceptable number of points is desired to reduce computational time.

Increasing the number of grid points past that of the Level 4 mesh was considered

prohibitive.  Views of the entire computational domain for the three two-dimensional

grids can be found in Figures 12 through 14.  Figures 15 through 17 show the portion

of each mesh close to the airfoil surface and display the packing of grid points in the

boundary layer region.

Two other files are required by ADPAC in order to run a calculation, an input

file and a boundary data file.  The input file contains parameters that allow one to scale

the non-dimensional grid.  In the boundary data file, one can specify the angle of

attack and how the boundaries of the grid are to be treated. A combination of

parameters within the input and boundary data files set the flow conditions.  For all the

two-dimensional airfoil performance calculations, the freestream Mach number was

fixed on the horizontal straight sections of the outer boundary of the computational

grid.  Total temperature and total pressure were fixed on the inlet curved section of

the outer boundary, and static pressure was fixed at the straight vertical exit plane. A

no-slip condition was imposed on the blade surface, forcing the velocity at the blade to

be zero. Because ADPAC is a compressible code, a freestream Mach number of 0.20

was set.   The Mach numbers for the experimental data were generally below 0.10.

Each grid was used to calculate the flow at  Reynolds numbers of 60,000,

100,000 and 200,000 while angle of attack was nominally 8.00°.  Angle of attack was
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set to match that given by the experiment.  Figures 18 through 20 show the calculated

airfoil surface pressure coefficients plotted against the non-dimensionalized chordwise

position and compared to the experimental data.  Good agreement between the

computations with the Level 4 grid and the experimental data was seen even at a

Reynolds number of 60,000 which would have the longest separation bubble of all

three cases.

Figure 21 shows a comparison of the calculated value of the lift coefficient as a

function of the inverse number of mesh points for each Reynolds number.   As

Reynolds number increases, more grid lines must be packed towards the airfoil surface

to resolve the thinner boundary layer.  The dimensionless distance of the grid line away

from the wall, y+, is defined by Schlichting in Reference 10 as:

y

y wall

+ =

τ
ρ

ν

where y is the dimensional distance of the grid line away from the airfoil surface, τwall

is the shear stress at the wall, ρ is the fluid density, and ν is the fluid kinematic

viscosity.  The values of y+ for the first grid line of the Level 4 mesh at the quarter

chord point are 0.0624, 0.0915, and 0.1537 for Reynolds numbers of 60,000, 100,000,

and 200,000, respectively.

Accompanying each solution is a set of convergence plots.  Figures 22 through

24 contain two convergence plots for each solution: the Root Mean Square (RMS)

Error, and the Number of Separated points at each iteration.   The Root Mean Square
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Error was defined to be the sum of the squares of the residuals of all the cells in the

mesh, the residual being the sum of the changes of the five conservative variables, ρ,

ρu, ρv, ρw, and ρe.  The ADPAC definition of a separated point was a cell whose

value for vx was negative. Generally, for the low Mach number cases, the calculation

was run until the number of separated points seemed to be constant and the residuals

were reduced by at least three orders of magnitude.

The Level 4 grid was then used for a series of calculations at a Reynolds

number of 60,000 and angles of attack ranging from -2.94° to 12.00°.  The Level 4

grid was chosen because of the good agreement between the surface pressures

calculated by ADPAC and the experimental data at a Reynolds number of 60,000 (Fig.

18).   Lift coefficients were calculated for each angle of attack and can be seen

compared to the Langley results in Figure 25.  Pressure coefficient distributions are

presented in Figures 26 through 31 for each of the colored points in Figure 25.

Figures 32 through 37 are the corresponding convergence histories for each of the

selected ADPAC calculations.  Since the viscous drag result was unavailable from

ADPAC, it was estimated by calculating skin friction drag on both sides of a flat plate

drag (Ref. 10):

Cd = 1328.

Re

The total of the viscous plus pressure drag coefficients were then plotted against the

Langley data and are shown in Figure 38.
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There was generally good agreement between the ADPAC calculated values

and the experimental values.  Examination of the plots shows that ADPAC, like many

other numerical analysis codes, was unable to predict the laminar stall that was

measured at Langley at angles of attack from 3.00° to 7.50°.  The marked increase in

measured drag in this region was also unpredicted by this version of ADPAC.  For

angles of attack less than 8.01° there is not good agreement between the calculated

and experimental data near the trailing  edge with ADPAC predicting recompression

farther upstream than was seen in experiments in the Langley LTPT (Fig. 26 - 29).

Agreement between the ADPAC prediction and the experimental results at the trailing

edge improves at angles of attack of 8.01° and greater (Fig. 30 - 31).
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Figure 12:  Entire Level 2 Computational Mesh of the Eppler 387 Airfoil

Figure 13:  Entire Level 3 Computational Mesh for the Eppler 387 Airfoil
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Figure 14:  Entire Level 4 Computational Mesh for the Eppler 387 Airfoil

Figure 15:  Portion of Level 2 Mesh Close to the Airfoil Surface
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Figure 16:  Portion of Level 3 Mesh Close to the Airfoil Surface

Figure 17:  Portion of Level 4 Computational Mesh Close to the Airfoil Surface
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Figure 18:  Pressure Coefficient vs. Non-dimensional Chordwise Position and
Different Computational Mesh Densities, Re = 60,000 and α = 8.01°
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Figure 19:  Pressure Coefficient vs. Non-dimensional Chordwise Position and
Different Computational Mesh Densities, Re = 100,000 and α = 8.00°
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 Figure 20:  Pressure Coefficient vs. Non-dimensional Chordwise Position and
Different Computational Mesh Densities, Re = 200,000 and α= 8.00°
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Figure 23: Comparison of the Convergence Histories, Re = 100,000 M = 0.2
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Figure 22: Comparison of the Convergence Histories, Re = 60,000 M = 0.2
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Figure 26: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 4.00°
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Figure 27: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 4.99°
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Figure 28: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 6.01°
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Figure 29: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 7.00°
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Figure 30: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 8.01°
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Figure 31: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 9.00°
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Figure 32: ADPAC Convergence History, Re = 60,000 M = 0.20 α = 4.00°
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Figure 34: ADPAC Convergence History, Re = 60,000 M = 0.20 α = 6.01°
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Figure 36: ADPAC Convergence History, Re = 60,000 M = 0.20 α = 8.01°
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Figure 37: ADPAC Convergence History, Re = 60,000 M = 0.20 α = 9.00°
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CHAPTER 4

Propeller Design Using Experimental Airfoil Data

Fundamentals of propeller theory were established by Glauert as early as 1926

(Ref. 11).  Primarily because of the absence of computers, solutions of Glauert’s

analysis theory could only be obtained after making a number of simplifying

assumptions.  While the basic theory has remained the same, Adkins and Liebeck have

recently removed most of the assumptions, establishing iterative design and analysis

procedures which, with the aid of a computer, can solve for the geometry or

performance of a propeller quickly.

Glauert used a combination of momentum and blade element theory to model

the propeller.  In the momentum theory, the flow upstream and downstream of the

propeller is considered to be a potential flow, that is, the fluid is assumed to be

inviscid, incompressible, and irrotational.  The propeller is thought of to have a large

number of blades so that it could be represented as an ‘actuator disc.’  Further,

Glauert assumed that the axial velocity passing through the actuator disc is

continuous, and the pressure over the surface of the disc is constant although it

increases discontinuously after passing through the disc.

 Glauert used a blade element theory to get more detailed information on the

performance of the propeller blades.  In this theory, flow past any blade airfoil section

is assumed to be two-dimensional and the lift at each section results from the

circulation of flow around the blade.  Trailing vortices are shed from the blade and
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pass downstream in a helical vortex sheet, and interference from these vortices cause

the rise in axial and radial velocities through the propeller.  Forces on the blade

elements can be resolved, and once integrated over the length of the blade, ultimately

yield propeller thrust, power, and efficiency.

Strip-theories other than Glauert’s momentum-blade element theory exist,

differing only in the way in which the induced velocities are found (Ref.12).  It was

Adkins and Liebeck (Ref. 2), however, who published algorithms for iterative design

and analysis procedures in which many of the simplifying assumptions were eliminated.

Specifically, Adkins and Liebeck’s procedures eliminated the small angle assumption,

and the lightly loaded assumption in the Prandtl approximation for momentum loss due

to radial flow.  Their procedures continue to neglect contraction of the wake.  If the

vortex sheet is assumed to form a rigid helical surface, the Betz condition for minimum

energy loss will be met.  A design will be optimized when viscous as well as

momentum losses are minimized.  To do this, the designer should specify that each

section operate at an angle of attack corresponding to the maximum lift-to-drag ratio.

Adkins and Liebeck give eleven steps describing the iterative design procedure

in Reference 2.  Briefly, the parameters specified at the beginning of a design are:

power, hub and tip radii, rotational speed, flight velocity, number of blades, number of

radial stations along the blade, and either a lift coefficient or chord length distribution

along the blade.  The program iterates to find blade twist angles, chord or lift

coefficient distributions (depending on which was specified in the input), radial and

axial interference factors, Reynolds number, and relative Mach number.
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A Reynolds number distribution was specified for the initial propeller designs

(Fig. 39).  This ensured that the two-dimensional airfoil experimental data available to

the design program would be representative of the blade sections. The program used

simple conditional statements to apply the experimental data from the Langley tests

shown in Figures 1 and 2. For chord Reynolds number equal to or exceeding 100,000,

the experimental data for Reynolds number of 100,000 was used, while the

experimental data for Reynolds number of 60,000 was used if the chord Reynolds

number was below 100,000.

Several designs were produced using the specified Reynolds number

distribution.  The propeller diameter and number of blades were varied until the

maximum lift coefficient along the blade did not exceed 80% of the maximum

experimental lift coefficient for the section.  For a two-bladed propeller, these criteria

were met when the diameter was increased to 6.8 m (22.3 ft).  A 4.6 m (15.1 ft) three-

bladed propeller and a 3.5 m (11.5 ft)  four-bladed propeller also met these

requirements.  Of the three designs, the three-bladed propeller was the most feasible.

While there are several benefits to a two-bladed design, the extremely large diameter

required raises manufacturing questions that would be avoided in the smaller three-

bladed design.  The three-bladed design yielded better efficiency than the even smaller

four-bladed design because of the decreased disk loading.  Efficiencies of the three-

bladed propeller and the four-bladed propeller were  85.3% and 81.5%, respectively.

Comparisons of the propeller geometries can be found in Figures 40 through 42.
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Examination of the blade twist distributions for all three designs (Fig. 40)

showed a ‘hook’ in the curve as the blade was twisted through the stalled portion of

the lift curve for the experimental data at the Reynolds number of 60,000 (Fig. 1).

Since viscous losses were not minimized in these designs, the three-bladed design was

optimized by relaxing the requirement that section lift coefficient be less than 80% of

the maximum and specifying a constant lift coefficient corresponding to the maximum

lift-to-drag ratio point in the experimental data set (Fig. 43 - 44).  Blade twist, chord,

lift coefficient, and chord Reynolds number distributions can be found in Figures 45

through 47.   While this eliminated the ‘hook’ in the twist distribution (Fig. 40), it was

clear that the lift coefficients near the hub would have to be decreased in order to

increase the chordlengths of the inboard sections.  The exercise of refining the hub

sections was deferred to the next design trials.

The design studies using the Langley experimental data were useful in several

ways.  These studies showed that the specified Reynolds number distribution did yield

a reasonable propeller geometry.  With refinement, chordlengths of the inboard

sections could be improved and the hook in the twist distribution curve could be

eliminated.  Knowing the Reynolds number and relative Mach number distribution

over the blade would help to account for compressibility effects that were so far

neglected in the present designs.  As will be shown in the next chapter, ADPAC would

be used to make performance predictions for the Eppler 387 airfoil operating at these
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transonic low Reynolds number conditions.  Finally, the design studies were useful in

identifying feasible values for the propeller diameter and number of blades.



47

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6 10

4

8 10
4

1 10
5

1.2 10
5

1.4 10
5

1.6 10
5

Figure 39: Design Reynolds Number vs. Non-dimensional Radial Position
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Figure 41: Chord (meters) vs. Non-dimensional Radial Position,
Designed Using Langley 2-D Experimental Data Only

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Lift Coefficient, 2 Bladed Propeller, Rtip = 3.4 m
Lift Coefficient, 3 Bladed Propeller, Rtip = 2.3 m
Lift Coefficient, 4 Bladed Propeller, Rtip = 1.75 m

Figure 42:  Lift Coefficient vs. Non-dimensional Radial Position,
Designed Using Langley 2-D Experimental Data Only

r/Rtip

r/Rtip



49

4 2 0 2 4 6 8 10 12 14

0

5

10

15

20

25

30

35

40

45

50

55

60

Re = 60,000 M = 0.05
Re = 100,000 M = 0.08

Figure 43:  Lift-to-Drag Ratio versus Angle of  Attack for the Langley LTPT
Experimental Data

α, degrees



50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.1

1.12

1.14

1.16

1.18

1.2

Figure 44: Lift Coefficient vs. Non-dimensional Radial Position, Three Bladed
Design, Tip Radius = 2.3 m, Langley 2-D Experimental Data Only
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Figure 47: Reynolds Number vs. Non-dimensional Radial Position, Three Bladed
Design, Tip Radius = 2.30 m, Langley 2-D Data Only
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CHAPTER 5

ADPAC Two-Dimensional Aerodynamic Predictions

ADPAC two-dimensional results were combined with the strip theory design

program in an effort to account for compressibility effects so far neglected.  To do so,

the blade was divided into four segments.  The specified propeller Reynolds number

distribution and the resulting Mach number distribution were used to identify an

average value of the Reynolds number and the Mach number for each segment (Figure

48).  These values are listed in Table 3.

Table 3.  Reynolds Number-Mach Number Combinations

Segment Reynolds Number Mach Number
1 60,000 0.45
2 100,000 0.55
3 100,000 0.65
4 60,000 0.75

The Level 4 computational mesh of the Eppler 387 (Figures 14 and 15) was

used to generate section performance predictions for a range of angles of attack for

each of the Reynolds number-Mach number combinations in Table 3.  Surface pressure

coefficients were compared to Langley experimental data that had been corrected for

the elevated relative Mach number using the Prandtl-Glauert compressibility correction

(Ref. 13)

Cp
Cp

M
corrected =

− ∞

0

21
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where Cp0 is the value of the incompressible pressure coefficient and M8 is the free

stream Mach number.    The pressure coefficients calculated with ADPAC were in turn

integrated to yield lift and pressure drag coefficients.  The total drag coefficient was

found by adding the viscous drag component once again estimated by drag on both

sides of a flat plate given by Schlichting in Reference 10:

Cd = 1328.

Re

Lift and drag curves are found in Figures 49 through 52.  Plots of the surface pressure

coefficients and corresponding ADPAC convergence history plots for angles of attack

of 4°, 5°, 6°, 7°, 8°, and 9° are given for Segment 1 in Figures 53 through 64,

Segment 2 in Figures 65 through 76, Segment 3 in Figures 77 through 88, and

Segment 4 in Figures 89 through 100. Where appropriate, the number of supersonic

points at each iteration are included in the convergence history plots.

An examination of the Segment 1 results at Re = 60,000 and M = 0.45 shows

that agreement between the ADPAC calculated values and the corrected Langley data

is generally good.  The calculated suction side pressure recoveries are sharper than the

corrected data would suggest for low angles of attack.  Just as was seen in the code

validation, ADPAC did not predict a laminar stall at angles of attack between 5.00°

and 6.49°.  For angles of attack between 7.51° and 12.00°, there appears to be

periodic shedding of the separated shear layer, similar to that reported by Pauley, et.

al. in Reference  4.  Figure 101 shows the pressure distribution over the airfoil at an

angle of attack at 8.01° and the streamlines shown in Figure 102 for the same
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condition indicate multiple separation and reattachment points near the trailing edge of

the suction side.  These results, as well as all of the other ADPAC results presented

here, are not time-accurate, but represent the steady state flow solution achieved with

local time stepping.  The local time stepping technique advances each cell in time by an

increment equal to the maximum allowable time step for that cell.  Generally, larger

cells away from a boundary layer will have a larger time step than smaller cells closer

to a solid surface.

Examination of the results in Segment 2 for a Reynolds number of 100,000 and

a Mach number of 0.55 shows that there was also generally good agreement for angles

of attack ranging from -2.88° to 4.00°.   Shock waves near the leading edge are seen

in the ADPAC predictions for angles of attack greater than 6.00°. Full stall is not

predicted at 14.04°.  The Prandtl-Glauert correction is inadequate for these conditions

and an experiment would be needed to validate these predictions.

As Mach number is increased from 0.55 in Segment 2 to 0.65 in Segment 3,

more differences are seen between the corrected experimental data and the ADPAC

predictions.  Shock waves are seen for all angles of attack above 3.00°, and like in

Segment 2, full stall of the airfoil at 14.04° is not predicted by ADPAC.

Representative of the tip sections, Segment 4 with a Reynolds number of

60,000 and a Mach number of 0.75 shows gross differences between the corrected

Langley data and the ADPAC predictions as would be expected from the inaccuracy of

the Prandtl-Glauert correction at these conditions.  ADPAC solutions indicate that the



55

airfoil is unable to produce a strong leading edge suction as a result of the shock

waves seen at every angle of attack.
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α, angle of attack, degrees
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Figure 51: Comparison of ADPAC Predicted Lift Coefficients at
Re = 100,000 and M = 0.55, 0.65

α, angle of attack, degrees
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Figure 52: Comparison of ADPAC Predicted Drag Coefficients vs Angle of
Attack  at Re = 100,000 and M = 0.55, 0.65

α, angle of attack, degrees
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Figure 53: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 4.00°
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Figure 54: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 4.99°
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Figure 55: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 6.01°
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Figure 56: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 7.00°
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Figure 57 : Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 8.01°
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Figure 58: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 9.00°
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Figure 59: ADPAC Convergence History, Re = 60,000 M = 0.45 α =4.00°
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Figure 60: ADPAC Convergence History, Re = 60,000 M = 0.45 α =4.99°
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Figure 62: ADPAC Convergence History, Re = 60,000 M = 0.45 α =7.00°
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Figure 61: ADPAC Convergence History, Re = 60,000 M = 0.45 α =6.01°
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Figure 63: ADPAC Convergence History, Re = 60,000 M = 0.45 α = 8.01°
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Figure 64: ADPAC Convergence History, Re = 60,000 M = 0.45 α = 9.00°
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Figure 65: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 4.00°
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Figure 66: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 5.01°
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Figure 67: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 6.00°
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Figure 68: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 7.00°
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Figure 69: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 8.00°
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Figure 70: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 9.00°
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Figure 71: ADPAC Convergence History, Re = 100,000 M = 0.55 α = 4.00°
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Figure 72: ADPAC Convergence History, Re = 100,000 M = 0.55 α = 5.01°

Iteration Number

Iteration Number

Iteration Number

Iteration Number



71

8

6

4

2

40001

0

200

400

40001

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

Figure 73: ADPAC Convergence History, Re = 100,000 M = 0.55 α = 6.00°
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Figure 74: ADPAC Convergence History, Re = 100,000 M = 0.55 α = 7.00°
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Figure 75: ADPAC Convergence History, Re = 100,000 M = 0.55 α = 8.00°
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Figure 76: ADPAC Convergence History, Re = 100,000 M = 0.55 α = 9.00°
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Figure 77: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 4.00°
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Figure 78: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 5.01°

X/C

X/C



74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

1

0

1

2

3

4

5

Corrected Langley Data
ADPAC Calculation, M = 0.65

Figure 79: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 6.00°
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Figure 80: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 7.00°
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Figure 81: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 8.00°
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Figure 82: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 100,000 α = 9.00°
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Figure 83: ADPAC Convergence History, Re = 100,000 M = 0.65 α = 4.00°
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Figure 84: ADPAC Convergence History, Re = 100,000 M = 0.65 α = 5.01°
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Figure 85: ADPAC Convergence History, Re = 100,000 M = 0.65 α = 6.00°
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Figure 86: ADPAC Convergence History, Re = 100,000 M = 0.65 α = 7.00°
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Figure 87: ADPAC Convergence History, Re = 100,000 M = 0.65 α = 8.00°
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Figure 88: ADPAC Convergence History, Re = 100,000 M = 0.65 α = 9.00°
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Figure 89: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 4.00°
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Figure 90: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 4.99°
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Figure 92: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 7.00°
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Figure 91: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 6.01°
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Figure 93: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 8.01°
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Figure 94: Pressure Coefficient vs. Non-dimensional Chordwise Position,
Re = 60,000 α = 9.00°

X/C

X/C



82

9

7

5

3

52004200

0

1000

2000

52004200

4200 4400 4600 4800 5000 5200
0

2000

4000

Figure 95: ADPAC Convergence History, Re = 60,000 M = 0.75 α = 4.00°
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Figure 96: ADPAC Convergence History, Re = 60,000 M = 0.75 α = 4.99°

Iteration Number

Iteration Number



83

8

5

2

41002000

0

1000

2000

41002000

2000 2500 3000 3500 4000
0

2500

5000

Figure 97: ADPAC Convergence History, Re = 60,000 M = 0.75 α = 6.01°
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Figure 98: ADPAC Convergence History, Re = 60,000 M = 0.75 α = 7.00°
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Figure 99:  1ADPAC Convergence History, Re = 60,000 M = 0.75 α = 8.01°
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Figure 100: ADPAC Convergence History, Re = 60,000 M = 0.75 α = 9.00°
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Figure 101: Pressure Distribution for Re = 60,000 M = 0.45  α= 8.01°

Figure 102: Streamlines Over the Suction Surface of the Airfoil,
Re = 60,000 M = 0.45, α= 8.01°
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CHAPTER 6

Propeller Design and Analysis Using Two-Dimensional ADPAC Predictions

The designs in Chapter 4 using only the low speed Langley data neglected the

effects of compressibility.  Even the Prandtl-Glauert compressibility corrections are

inadequate for the tip sections.  To account for the compressibility effects, the

resulting lift and drag curves for each of the conditions listed in Table 3 were

incorporated into the strip theory design and analysis programs (Figures 49 through

52).  Again, simple conditional statements were used to apply these predicted values

along the length of the blade.

The first design exercise was to see what effect elevated Mach numbers would

have on the propellers designed using only the Langley experimental data.  Keeping

the number of blades, diameter, and Reynolds number distribution the same as was

used for the initial designs, new designs were made.  The new twist, chord, and lift

coefficient distributions can be found in Figures 103 through 105.

Examination of the twist distribution still show a ‘hook’ near the tip.  In these

designs, though, this ‘hook’ results from the degradation in performance as Mach

number is increased, rather than from the laminar stall found in the Langley data at low

angles of attack.  Efficiencies of the three and four-bladed propellers using the

ADPAC predictions were 80.3% and 76.4%.  These values are roughly 5% less than

the efficiencies predicted for the low speed designs using the low speed Langley data

alone.
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To optimize the design, a lift coefficient distribution asymptotically reaching

the average maximum lift-to-drag ratio point along the blade was specified (Fig. 106).

This was done to increase the chordlengths of the inboard sections, as was seen to be

necessary in Chapter 4.  The resulting propeller twist, chord, Reynolds number, and

relative Mach number distributions can be found in figures 107 through 110.

Efficiency for this propeller at design point was 85.1%.  This propeller was considered

to be the final design.

The strip-theory analysis program was used to generate off-design propeller

performance predictions for the final design.  Input to the analysis program includes

the propeller geometry, advance ratio, pitch angle, cruise Mach number, and altitude.

The program iterates to find the induced velocities and induced angle of attack.  From

this information, the lift coefficient distribution along the blade can be found and

propeller thrust, power, and torque coefficients as well as efficiency can be calculated.

Among the many tests of programming integrity, performance calculated by the design

program should and did exactly match that calculated by the analysis program at

design point.

The off-design performance maps were created by changing the advance ratio

and pitch angle of the propeller.  Variations of the propeller efficiency, thrust, power,

and torque coefficients for a range of pitch angles are shown in figures 111 through

114.  At design point, the value of the advance ratio is 1.814 and the blade twist angle

at the 75%  radial position is 42.52°.
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Examination of the off-design performance curves for the propellers indicates

that there may be some merit to operating the propeller at a slightly higher pitch angle

than that at the design point.  While maintaining the design advance ratio of 1.814,

increasing the pitch angle so that the angle at the 75% radial position is 45°, a 25%

increase in thrust can be realized for a penalty of 5% in efficiency.  Operating at this

point may be desirable if sufficient engine power is available.  Increasing the pitch

setting past this point may not be recommended since the blade begins to stall when

the angle at the 75% radial station reaches 50° as shown in Figure 115.  To decrease

the advance ratio while maintaining a constant cruise velocity may not yield the

predicted increase in thrust since as tip speeds increase, shock waves will affect a

larger portion of the blade degrading performance.  A comparison of the design point

conditions and those for this high thrust case can be found in Table 4.  Actual

performance for both cases will vary from the predicted values as the blades twist in

operation.  A structural analysis would need to be conducted to understand the

propeller’s performance more fully.
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  Table 4.  Comparison of the Design Point and Maximum Thrust Point

Design Point
Pitch Angle at 75%R =

42.52°

Maximum Thrust Point
Pitch Angle at 75%R =

45.00°
Efficiency 0.8509 0.8107

Thrust Coefficient 0.1411 0.1780
Power Coefficient 0.3007 0.3983
Torque Coefficient 0.0479 0.0634

Thrust 450.9  N
(101.3 lbs)

569.0  N
(127.9 lbs)

Power 63.4  kW
(85 hp)

83.9  kW
(112.6 hp)

Torque 703.7  N-m
 (519.0 ft-lbs)

932.1  N-m
(687.5 ft-lbs)

Advance Ratio 1.814 1.814
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Figure 103: Blade Twist Angle (degrees) vs. Non-dimensional Radial Position,
Designed Using ADPAC Predicted Values Only
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Figure 104: Chord (meters) vs. Non-dimensional Radial Position,
Designed Using ADPAC Predicted Values Only
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Figure 105:Lift Coefficients vs Non-dimensional Radial Position
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Figure 106: Lift Coefficient vs. Non-dimensional Radial Position,
ADPAC Predicted Values Only
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Figure 107: Blade Twist Angle (degrees) vs. Non-dimensional Radial Position,
Designed Using ADPAC Predicted Values Only
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Figure 108: Chord (meters) vs. Non-dimensional Radial Position,
Designed Using  ADPAC Predicted Values Only
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Figure 109: Reynolds Number vs. Non-dimensional Radial Position,
Designed Using  ADPAC Predicted Values Only
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Designed Using  ADPAC Predicted Values Only
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Figure 111:  Propeller Efficiency versus Advance Ratio for a Range of Pitch
Angles
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Figure 112: Thrust Coefficient versus Advance Ratio for a Range of Pitch Angles
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Figure 113: Power Coefficient versus Advance Ratio for a Range of Pitch Angles

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
0

0.02

0.04

0.06

0.08

Beta at 75% R = 45.00 degrees
Beta at 75% R = 42.52 degrees - Design Point
Beta at 75% R = 40.00 degrees

Figure 114:  Torque Coefficient versus Advance Ratio for a Range of Pitch
Angles
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CHAPTER 7

ADPAC Three-Dimensional Performance Calculations

A three-dimensional model of the propeller was made from the twist and chord

distributions (Fig. 107-108) calculated using Adkins’ and Liebeck’s strip theory design

methods (Ref. 5).  Views of the propeller’s solid surfaces can be seen in Figures 116

and 117.    The computational mesh of the flowfield around the propeller extends one

radius upstream of the propeller, one radius downstream, and one radius radially

outward from the blade tip.  The entire mesh contains 4,157,138 grid points.  The hub

surface was modelled as a simple cylinder.  The blade suction and pressure surfaces

were established as “no-slip” surfaces while the cylindrical hub was established as a

“slip” surface.  Total temperature and total pressure were fixed on the vertical inlet

plane, and freestream static pressure was fixed at the vertical exit plane.  The

freestream Mach number was fixed on the cylindrical outer boundary of the

computational grid.

A program called TCGRID written by Roderick V. Chima (Ref. 14) was used

to create a fine “C” grid around one propeller blade as well as a somewhat coarser “H”

grid farther upstream of the blade.  Since TCGRID was originally intended to generate

meshes for turbomachinery blading, it was a challenge to create an appropriate mesh

for such a large blade with this program.  The two grid blocks made with TCGRID

were modified so that the final mesh consisted of ten separate grid blocks.  As shown

in Figure 118, the fine “C” grid block was broken into four separate blocks (Blocks 1-

4), and the coarse inlet block is shown in yellow as Block 5.  The fine mesh was
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retained for Block 1 closest to the blade, while the mesh was coarsened by eliminating

every other grid line from the original fine mesh to yield Blocks 2 through 4.  The

coarse mesh was broken at the corners of the “C” grid to avoid possible problems

within ADPAC concerning stretching ratios, or the relative size of neighboring

computational cells.  Figure 119 is a view forward looking aft of the computational

domain surrounding one of the three propeller blades.  Figures 120 through 122 show

the portion of the computational mesh near the inlet block region, near the blade hub,

and near the exit region, respectively.  Separate FORTRAN programs were written to

extend the mesh radially outwards creating Blocks 6 through 10 (Fig. 123).

There are many features which are desired of a computational mesh—some for

physical reasons and some to comply with the ADPAC program format.  Physically,

there again should be enough grid points packed close to the blade surface so that the

boundary layer can be resolved.  The grid should also extend well into the free stream

ahead of the blade, behind the blade, and radially outward.  It is also recommended

that the gridlines follow the trailing edge angle of the blade sections so that separation

and any vortices that may be shed can be seen.  The challenge when creating a mesh is

meeting all these requirements while keeping the number of grid points to a minimum

to reduce computational time.  Practically, the upstream and downstream extents of

the mesh were sacrificed in order to add grid points closer to the blade surface.  Even

so, the three-dimensional mesh is much coarser than the two-dimensional meshes seen

earlier.  Values for y+ of the first grid line above the blade surface at approximately the
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quarter chord location were 2.266 for the section at r/Rtip = 0.406, 2.692 for the

section at r/Rtip = 0.666, and 3.671 at r/Rtip = 0.905.

For a mesh to be suitable for an ADPAC three-dimensional calculation,

stretching ratios for the cells should be around 1.3.  TCGRID did not contain input

parameters to vary stretching ratios directly, so this requirement was met by adding

grid points until the stretching ratios near the tip were within acceptable bounds.

ADPAC uses a multigrid method to speed convergence.  This technique generates

intermediate solutions by coarsening the mesh by eliminating grid points.  Three levels

of multigrid are recommended and can be achieved if the number of cells in each

direction for each block are divisible by four.  Coordinates for the leading edge and

trailing edge of the blade must also meet this criterion if the multigrid technique is to

be used.   If an “H” grid is used for an inlet block, the upstream edge of the “C” grid

must be square and must not overlap the inlet block cells.  Finally, coordinates of all

grid blocks must be ordered to form a left-handed coordinate system.

ADPAC was used to calculate the steady state viscous flow over the rotating

propeller blade at the design conditions.  The convergence history plots are shown in

Figure 124.  After over 2500 iterations, the solution was considered to be converged

because the RMS error had decreased by three orders of magnitude and the number of

separated points was constant.  Figure 125 shows three blade sections near the hub,

midspan, and tip of the blade where the pressure and Mach number contours are

shown in Figures 126 through 131.  The ADPAC solution at the design point indicated

no separation bubbles that had been seen in the low Reynolds number low Mach



100

number two-dimensional cases studied earlier.  Full separation near the trailing edge

was seen, along with a shock wave along approximately one quarter of the blade near

the tip.  The area of supersonic flow is more clearly seen in Figures 132 and 133.

Efficiency, as well as thrust, power, and torque coefficients were calculated and

compared to results obtained from strip theory calculations.  The comparisons can be

in Table 5 or graphically in Figures 134 through 137.

Table 5.  Comparison of Strip Theory and ADPAC Results at Design Point

Strip Theory Result at

the Design Point

ADPAC Result at the

Design Point

Efficiency 0.8509 0.8624

Thrust Coefficient 0.1411 0.1355

Power Coefficient 0.3007 0.2850

Torque Coefficient 0.04785 0.04536

Thrust  450.9 N

(101.3 lbs)

 433.0 N

(97.3 lbs)

Power 63.4 kW

(85 hp)

60.1 kW

(80.6 hp)

Torque  703.7 N-m

(519.0 ft-lbs)

 667.0 N-m

(491.9 ft-lbs)

Examination of the results show that the ADPAC calculation of efficiency was

within 1.5% of the strip theory value, but that the ADPAC values for the thrust,
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power, and torque coefficients were approximately 5% lower.  This difference can be

attributed to several factors.  First, because of the simplistic application of the two-

dimensional low Reynolds number transonic predictions, the strip theory design did

not account for the shock from r/Rtip of approximately 0.75 to 0.90.  Secondly, the

three-dimensional mesh was considerably less dense than the two-dimensional meshes

and may be below the value for which the solution is independent of the number of

grid points.  Finally, the tip vortices as shown in Figure 138, were not taken into

account in the strip theory design and analysis programs. The tip vortex from one

blade and the blade wake can also be seen in the Mach number distribution at the exit

of the computational domain shown in Figure 139.
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Figure 116:  The Three-Bladed Propeller and Extended Hub Surface, Side View

Figure 117:  Front View of Three-Bladed Propeller
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Figure 118: Computational Mesh Blocks and Solid Surfaces, Axial View

Figure 119: Forward Looking Aft View of Propeller Blade and Computational
Mesh Blocks

Block 1
Block 2
Block 3
Block 4
Block 5
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Figure 120:  Magnified View of Inlet Block Region

Figure 121:  Magnified View of Blade Region
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Figure 122:  Magnified View of Trailing Edge Region

Figure 123:  View of Computational Mesh Upstream and Above the Blade Tip—
Forward Looking Aft
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   Figure 124:  Convergence History for the Three-Dimensional ADPAC
Calculation

Figure 125:  Hub, Midspan, and Tip Sections
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Figure 126:  Pressure Ratio Contours for r/Rtip = 0.406

Figure 127:  Mach Number Contours for r/Rtip = 0.0406
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Figure 128:  Pressure Ratio Contours for r/Rtip = 0.666

Figure 129:  Mach Number Contours for r/Rtip = 0.666
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Figure 130:  Pressure Ratio Contours for r/Rtip = 0.905

Figure 131:  Mach Number Contours for r/Rip = 0.905
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Figure 132:  Suction Surface Pressure Distribution

Figure 133:  Mach Number Distribution Over the Suction Side of the Blade
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Figure 134:  Comparison of Strip Theory and ADPAC Calculations of Efficiency
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Figure 135:  Comparison of Strip Theory and ADPAC Calculations of Thrust
Coefficient
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Figure 136: Comparison of Strip Theory and ADPAC Calculations of Power
Coefficient
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Figure 137: Comparison of Strip Theory and ADPAC Calculations of Torque
Coefficient
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Figure 138:  Tip Vortex Streamlines

Figure 139:  Pressure Distribution at the Exit Plane of the Computational
Domain

y
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CHAPTER 8--CONCLUSION

Comparison of the strip theory design and analysis results with those from

ADPAC, a numerical Navier-Stokes analysis code, sheds light on the strengths and

weaknesses of both techniques.   Propeller efficiency predicted by ADPAC was within

1.5% of that calculated with the strip theory methods at the design point while

ADPAC predictions of thrust, power, and torque coefficients were approximately 5%

lower than the strip theory results.

The main advantage to the strip theory design and analysis methods is speed.

Since design is an iterative process, the designer must be able to change conditions

easily and determine the propeller’s geometry quickly and Adkins’ and Liebeck’s

procedures prove to be a useful tool.  Results from strip theory analyses can be

obtained quickly as well, a necessity when calculating performance at many off-design

conditions in order to create a propeller map.  Despite the simplifying assumptions

made, reasonable accuracy was achieved with Adkins’ and Liebeck’s strip theory

methods.

The main advantages of using ADPAC was the elimination of simplifying

assumptions required to make the performance calculation and the visualization of

results.  Shocks and tip vortices ignored in the strip theory analysis were clearly seen

in viewing the ADPAC results.  However, the improvement in the analysis required a

substantial amount of time to learn how to run the code, to create appropriate meshes,

and to post-process the output files.  This time is in addition to that required to

actually run the calculation.  The three-dimensional mesh consumed a great amount of
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time since approximately 22 hours were needed to complete 100 iterations on a

dedicated workstation with an R8000 processor.

In conclusion, the fusion of two dimensional strip theory design and analysis

methods with ADPAC, a three-dimensional Navier-Stokes yielded a good first-

generation propeller design for a vehicle capable of subsonic flight in Earth’s

stratosphere.  Lift and drag coefficients for the Eppler 387 at low Reynolds number

transonic conditions were generated  with ADPAC since experimental results were

unavailable for this regime.  Examination of the three-dimensional results showed that

the Eppler 387 was not a suitable airfoil for at least the tip sections of the propeller

because of the shock waves seen on the suction surface of the relatively thick outboard

sections.  Improvements can be made to this design by combining two-dimensional

airfoil ADPAC results for other airfoils into the strip theory design and analysis

methods (if experimental data is unavailable), making a full three-dimensional

prediction  only after several design iterations are made.
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