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Abstract

This paper demonstrates the need for a nonconstant initialization for the fi'actional
calculus and establishes a basic definition set for the initialized fractional differintegTal. This
definition set allows the formalization of an initialized fractional calculus. Two basis calculi are

considered; the Riemann-Liouville and the Gr_nwald fractional calculi. Two forms of

initialization, terminal and side are developed.

1. Introduction

The issue of initialization has been an essentially unrecognized problem in the

development of the fractional calculus. Liouville's definition ([5], p.21) for the fractional integral
with lower limit of -,,_ and Reimann's ([5], p.21) choice of the lower limit of c, were in fact

related to the issue of initialization. Ross [8],[9] recognizes that to satisfy composition of the

fractional differintegral, that the integrated function and its (integer order) derivatives must be
zero for times up to and including the start of fractional differintegration. Podlubny ([7] pp.

125,133) recognizes the need for initialization but carries it no further. Ross provides a history of
the fractional calculus (see [6], p8.) in which he quotes A. Cayley referring to Riemann's paper

"The greatest difficulty in Riemann's theory, it appears to me, is the interpretation of the

complementary function .... " Ross continues, ''The question of the existence of a complementary
function caused much confusion. Liouville and Peacock were led into error, and Riemann

became inextricably entangled in his concept of a complementary function." In retrospect the
difficulties of Riemann over the role of the complementary function, which has been abandoned

in this mathematics, may in fact have been related to the issue of initialization. The

complementary function issue is raised here because an initialization function, which accounts for
the effect of history, for fractional integrals and derivatives, will appear in the definitions

presented. Its form is similar to Riemann's complementary function, however, the meaning and
use of this function is different (now clear).

In the solution of fractional differential equations with an assumed history, it has been

implicitly inferred by many authors ([1], [5], [6], [7], [10], and others), that an initializing
constant, or set of constants, representing the value(s) of the fractional differintegrals (at t = 0)

will provide an adequate representation for the effects of the past for each differintegral. That this

is not true will be demonstrated in this paper.

Finally, because the constant initialization of the past is insufficiently general, the widely
used contemporary equation for the Laplace transform for the differintegral ([6], p. 135 for
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example),basedonthatassumptionalsolackssufficientgenerality.Analternativegeneralized
formispresented.

1.1Proofof Non-Constant Initialization

Consider the following qth order fractional integrals of f(t), the fLrst starting at time t = a, and

the second starting at time t = c > a

1 '
adTqf(t) = ---7"5 f (t- l")q-, f(r)dv (1.1.1)

Ikq)_

and

t

cd:q f (t)= _q)! (t- z)q-t f (r) dr. (1.1.2)

Assume that f(t)is zero for all t _<a, then the time period between t = a and

t = c maybe considered to be the "history" of the fractional integral starting at t = c, namely,

¢d( qf O). Then, we should expect that when this integral, (c d( qf (t)), is properly initialized that

it should function as a continuation of the integral starting at t = a. To achieve this an

initialization must be addended to cdTqf (t) so that the resulting fractional integration starting at

t = c should be identical to the result starting at t = a for t > c. Thus, calling l/t the unknown

initialization we have that

Then

cdTq f(t)+v=odTq f(t) t > c. (1.1.3)

v=odTqf(t)-cdTqf(t) t>c. (1.1.4)

V- (t-r)q-l f(r)dr-od-Sf(t) t>c. (1.1.5)

Here 1/] is seen to be a function of the independent variable t, completing the proof. We see that

!V is a generalization of the case for the ordinary integral ( q = 1 ), where

c

I/I= f f (r)dr = constant.
a

The insight for this behavior was originally obtained through the study of one-
dimensional semi-infinite diffusion and wave equations [2].

Having now recognized the need for a more general initialization, it must be decided if it

is prudent to proceed as is done in the ordinary (integer order) calculus. That is, to append the
initialization (constant of integration or constant initialization terms of ordinary differential

equations) when required in an ad hoc manner or to formalize the process.

Because of the increased complexity of the initialization relative to the integer order
calculus case it is prudent to formalize the initialization, that is to include an initialization term

into the definitions for the fundamental operators. The remainder of this paper will establish the
definition set for an initialized fractional calculus, consider briefly the 'Ross criteria" [8],[9] for a

calculus, present a generalized (corrected) form for the Laplace transform of a differintegral, and

demonstrate the solution of properly initialized fractional differential equations.
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2. Definitions for the Initialized Fractional Calculus

Several bases are possible for the initialized fractional calculus, these include the Riemann-
Liouville, and the Grinwald formulations. The Riemann-Liouville form of the fractional calculus

will be the only basis considered here. A consideration of a Grtinwald based initialized fractional

calculus may be found in [3]. In the development that follows, attention is restricted to real

values of the order, q, of the various differintegrals.

Two types of initializations are considered, 'terminal initialization", where it is assumed that

the differintegral operator can only be initialized ("charged") by effectively differintegrating prior
to the "start" time, t = c, and "side initialization", where a fully arbitrary initialization may be

applied to the differintegral operator at time t = c. The terminologies "terminal charging" and

"side charging" have also been used to describe these initialization processes [3]. For discussion

purposes, it is assumed that t (time) is the independent variable associated with the fractional

differintegration and the function to be differintegrated is f (t).

2.1 Initialization of Fractional Integrals
2.1.1 Terminal Initialization

Terminal initialization is considered first. It is assumed that the fractional integration of interest

"starts" at t = c (i.e. point of initialization). Further, f(t) = 0 for all t < a, and the fractional

integration takes place for t > c > a. The initialization period (or space) is defined as the region
a<_t<c.

The standard (contemporary) definition of a fl'actionaI integral will be accepted _ when

the differintegrand f(t) = 0for all t < a

Then,
t

" _(v)!(t z)"If(r)dr, v>O,t>a, (2.1.1.1)on,:(,)- -

forall t<:a. The followingdefinitionoffractionalintegrationwillapply

v>0. (2.1.1.5)

subject to f(t) = 0

generally (i.e., at any t > c ) :

1 '

cD;,' f(t)--_(v)!(t_.rfl f(z)dr+gt(f -v,a,c,t _ v>O,t>c, (2.1.1.2)

c>aandf(t)=O V t<a.

The function I//(f,-v, a, c, t) is called the initialization function and will be chosen such that

.D?" f(t)= ,D-JU(t) t>c. (2.1.1.3)

Substituting the results from equations 2.1.1.1and 2.1.1.2, then, for t > c and v ->0 gives

1 '

F-(v) ! (t-r)"-' f(z)dz =_(v)!O_z),,-, f(r)dr+llt(f ,_v,a,c,t)l (2.1.1.4)

t ¢ l

Because l g(T)dz= I g(r)d_ + I g(r)dz,
a a c

v(f,-v,a,c,t) =,D:"f(t) = (t- r)"-' f(r)dr, t > c,

NASA/TP_2000-209943 3



Thisexpressionfor gt(t) appliesfor theterminalinitializationcondition.Clearly,1/tbringsto
thedefinitionof thefractionalintegraltheeffectof thepast,namelytheeffectof fractionally
integratingf(t) from a to c. This effect will, of course, influence behavior after the time,

t = c. The Ig function has the effect of allowing the function f(t) and its derivatives to start at

a value other than zero, namely the value , DTqf(t) I,=c, and the I//-function continues to

contribute to the differintegral response after t = c. That is, a function of time is added to the

uninitialized integral, not just a constant.
The integer order integrals under terminal initialization are of special interest. Evaluating

equation 2.1.1.5, for example, for v = 1, indicates that _(f,-1, a, c, t)= constant. The general

case is readily shown to be

,
i=O

This, of course, is the same effect as seen in the integer order calculus using the "constant of

integration." It is important to note that the initialization of the qth fractional integral of f(t) is

not unique in the following sense. That is, f(t) can be considered as a composite function, for

example, f(t)= g(t)U(t-c)+h(t)(U(t-a)-U(t-c)), where U(/)is the unit step function

g(t) = t > o.

Then for this composite function f(t), it is the function g(t)U(t - c) that is being

differintegrated and h(t)(U(t- a)-U(t- c))is the function on which the initialization is based.

This is analogous to choosing an arbitrary constant value to initialize (the integration of) dy / dt

in the solution of an ordinary differential equation.

2.1.2 Side Initialization

When side initialization is in effect as opposed to terminal initialization equation 2.1.1.2 is still

taken as the operative definition and,

I/t = Ig(t)(i.e., is arbitrary) (_9.1.2.1)

That is, equation 2.1.1.5 no longer (generally) applies.

2.2 Initialization of Fractional Derivatives

To extend the definition to the fractional derivatives, some issues must be addressed. The

definition of the fractional derivative raises the following important questions in the context of

initialization. Do fractional derivatives require an initializbig function in general? Further, do

integer order derivatives in this context require initialization functions ? Clearly as we commonly
think of derivatives, in the integer order calculus, the derivative is a local property and is

represented geometrically as the slope of the function being considered and as such it requires no
initialization. In the solution of differential equations the initialization constants which set the

initial values of the derivatives really have the effect of accounting for the integration of the
derivative from minus infinity to the starting time of the integration (of the differential equation).

A study of the representation of semi-infinite systems using fractional differential equations

[2],[3] indicates that the fractional derivative is not a local property as appears to be the case for
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integerorderderivatives(in theintegerordercalculus).Further,tosolvesuchfractional
differemialequationsaninitializationfunctionis required to handle the effect of the distributed
initialization. Also, the integer order derivative in the fractional context can be shown to require
an initialization function. Therefore, the answer to both questions is clearly YES. The impact of

this is to require an initialization function for the fractional (and integer order) derivatives.

Thus, a generalized integer order differentiation is defined as

dm

<D'f f(t)--_t,,f(t)+llt(f,m,a,c,t ) ,>c, (2.2.1)

where m is a positive integer and where _(f, m, a, c, t)is an initialization function. This is, of

course, a generalization of the definition of the derivative, and for many cases, for example,

usually in the integer order calculus, I/t will be taken to be zero. It will be shown later that, for

m = 1 with the condition of terminal initialization that llt(f,l,a, c, t) = O.

Now the uninitialized fractional derivative is defined as

_Dqf(t__aDT_D;Pf(t) q>O,t>a, and f(t)=OVt<a, (2.2.2)

and (for convenience) m is the least integer greater than q, and q = m - p. Now as in the

fractional integral case I//(f ,- p, a, a, t) = 0. Further, since I/t (h, m, a, a, t) = 0, where

h (t) = aD_-pf (t), this definition specializes to the contemporary definition of the fractional

derivative.

Now the initialized fractional derivative is defined as

<Dqf(t) = <D_'f(t) cDTf(t) q>O, t>c>a, (2.2.3)

where (for convenience) m is the least positive integer greater than q and q = m - p.

The above definitions, equations (2.2.1) to (2.2.3), hold for both terminal initialization as well as

side initialization.

2.2.1 Terminal Initialization

The initialization of the fractional derivative proceeds in a manner similar to the fractional

integral, that is, it shall be required that;

cDqf(t)= Dqf(t) Vt>c>a with q>0. (2.2.1.1)

Specifically, this requires compatibility of the derivatives starting at t = a and t = c, for t > c.

It follows then that

<DT<DSPfq)=aDS,DTPfO), q>0, t>c>a. (2.2.1.2)

Expanding the generalized integral terms

_D -rf-_ f(r)dr+g(f,-p,a,c,t =

_D;' t-r)P-i f(r)dr+llt(f ,-p,a,a,t t>c. (2.2.1.3)

Since o/(f,-p, a, a, t) = 0 and using the definition (eq.(2.2.1)) for the integer order derivative,

equation (2.2.1.3) may be written as

NASA/TP--2000-209943 5



+v,(h,, ,)
7Lr(p) (t-r) f(r)dr+lll(f ,-p,a,c,t m,a,c, =

d m I ! (2.2.1.4)at" r(-p)_(t-z)P-'f(v)dr+llt(h:'m'a'a't)' t >c,

where h I=_D[Pf(t)and h2=oDTPf(t). The integer derivative is uninitialized at t = a,

therefore Ig(h2, m, a,a, t) = 0. Then combining integrals gives

 m(±i )u/(h,,m,a,c,t)=dt,,_F(p)o(t-r)P-_f(r)dr-u/(f,-p,a,c,t ) t>c. (2.2.1.5)

Under the condition of terminal initialization of the fractional integral, the argument of the

derivative above is zero thus I//(h I, m,a, c, t) = 0. For the case of side initialization of the

fractional integral part of the fractional derivative _(f,-p, a, c, t) is arbitrary. Thus it can be

seen from the above equation that either Ili(f,-p,a,c,t ) or Ig(hl,m,a,c,t ) can be arbitrary but

not both while still satisfying the requirements of the initialization (equation (2.2.1.5)).

2.2.2 Side Initialization

The fractional derivative, side initialization case, can now be stated as

cDTf(t)=cD , -rf-t f(r)dr+u/(f,-p,a,c,t , q>_O,t>c,

and m isthe least positive integer >q with q = m - p, or equivalently as

cDq' f(t)= dmdtm F _)!(t-r) P-' f (r)dr+ f ,-p,a,c,t)+iv(h,m,a,c,t),q>_O,(2.2.2.2 )

where m is as above, t > c, and h(t) = _D[Pf(t). Here both initialization terms are arbitrary

and thus may be considered as a single (arbitrary) term, namely

d m

llt(f ,q,a,c,t)--yym llt(f ,-p,a,c,t)+ly(h,m,a,c,t ). (2.2.2.3)

In the case of terminal initialization of the fractional integral part of equation (2.2.2.1)

I/t(f,-p, a, c, t) will be as defined by equation (2.1.1.5). It is noted, that the a and c arguments

in the I/t functions in equations (2.2.2.1) to (2.2.2.3) are carried for parallelism to the previous

cases and are not intended to infer an initialization period under side initialization.

2.3 A Simple Example

A simple example will be helpful. Consider the semi-integral of f(t) = (t - a)U(t - a),

then fi'om ([6], pp. 63-64) the uninitialized semi-integral becomes

DTm (t_a)U(t_a): (t'a) v:
° r(2.5) ' t>a. (2.3.1)

Now, initializing from the point t = c

NASA/TPm2000-209943 6



t

cD/P'(t-a)U(t-a)=_!(t-r)-l'2(r-a)dz+llt(f,-1/2,a,c,t) t >c

_ 2 t>c. (2.3.2)
3F(1/2)

Consider now the terminal initialization,
c

llt(f -1/2,a,c,t)= F_!(t-r)-l]'-(r-a)dz t>c,

_ 2 [(t-c_/'-(-Zt+3a-c)-(t-a)"'-(-Zt+2a)], t>c. (2.3.3)
3F(1/2)

The numerical evaluations of these equations for specific numerical values, a = -1, c = 1, are

shown in the graphs of figure 1.

.+
r_

l'2<,-a)l]

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

Time

Figure 1 Sample Problem---Semi-Integral of (t-a) vs Time with

a= -1, c=l

3. Criteria for A Fractional Calculus

Ross [9] provides a set of criteria for a fractional calculus. The criteria include the

following properties: backward compatibility with the normal (integer order) calculus, the zero

property, namely ¢D ° f (t)= f (t _ linearity of the operators, and that the index law should hold,

that is, cD_ cD;'f (t)=cD;' cD;'f (t)=_D_+Vf (t). Under the conditions of terminal initialization

the above properties are each shown to hold ([3], pp. 26-44). This provides credibility to the

NASA/TP--2000-209943 7



initializedfractional calculus, also completion of the proofs yields constraints on the allowable

initialization functions. For example, linearity of the fractional integral

cD_"(b f(t)+k g(t))=bcD_" f(t)+k cD;"g(t) t >c, (3.1)

holds if and only if

llt(bf + kg,-v,a,c,t)= blF(f ,-v,a,c,t)+ kllt(g,-v,a,c,t) t > c. (3.2)

4. Laplace Transform of Fractional Differintegrals

The Laplace transform of the differintegral is an important tool in the solution of
fractional differential equations. The following form for the Laplace transform of the fractional

derivative is given by many authors (see for example, ([7], p. 105), ([6], p. 134), or an equivalent

form in ([5], p.123))
n--t

Lll)Dff(t)_=sPF(s)-ZSkoOP-k-lf(t]r=o n-l<_ p<n. (4.1)
k--o

The Laplace transform of the fractional integral is given ([7], p. 104), and ([6], p. 134) as,

L{_D_PfO)}=s-PF(s) p>0. (4.2)

The form of the summation in equation (4.1) infers that the p- th order derivative is being

decomposed into a fractional integral (order < 1) and (n-1) order 1 derivatives. Further inferred is

that each derivative is initialized by an impulse at t = 0 . This situation is a residual from the

integer order calculus and lacks sufficient generality for a properly initialized fractional calculus.

It should be noted that in equations (4.1) and (4.2) above D r and D -p refer to the contemporary

uninitialized fractional derivative and integral respectively.
For the initialized fractional calculus the Laplace transform of the initialized fractional

differintegral ([3], p.61) is given by

L{_Dq f(t)}=sqL{f(t)]q-L{llt(f ,q,a,O,t)}, Vq, (4.3)

where _ depends on; the assumed past history of 0 Dq f (t), and the assumed decomposition of

oDqf (t) (as required in the problem definition). It should be noted that for q > 0 in the most

general case (side initialization) that the equivalent form for I,ttmust be used. That is

dm \ [i

_(f ,q,a,O,t)=-ff-_t_ _(f ,-p,a,O,t)+_tn,m,a,O,t ) q>O, where hO)=ad;P fO). (4.4)

More powerful forms than equation (4.3) have been derived that account for all possible

decompositions of 0Dqf (t). For a detailed explanation of the decomposition issue the reader is

referred to ([3], p.46-58).

5. Fractional Differential Equations

Proper initialization is crucial in the solution and understanding of fractional differential

equations. The application of the initialized fractional calculus to the solution of initialized
fractional differential equations will be illustrated with the following examples.

NASA/TPP2000-209943 8



5.1Example1
Podlubny([7],p. 138)andOldhamandSpanier([6],p. 157)considerthefollowing

fractionaldifferentialequation
-1/2

oD]/2f(t)+bf(t)=O, t>0; oD, f(tt,=o=C. (5.1.1)

The notation 0 D]_:f(t) is that of Podlubny, and of course, refers to the uninitialized derivative.

Equation (4.1) above, is used by Podluny, to obtain the Laplace transform of equation (5.1.1) as

C (5.1.2)
F(S)-s,/,_+b

The inverse transform is then given in terms of a two-parameter Mittag-Leffier series expansion

f(t)=Ct-'/ZE, ,(-b47). (5.1.3)

2'2

For b = 1, then this is determined to be

f(t)=C(-_-e'erfc(.qt7)), (5.1.4)

which agrees with the result of Oldham and Spanier [6]. This is contrasted with the following
approach using the results from the initialized fractional calculus.

We now solve equation (5.1.1) again, but now oD_/2 f(t) is interpreted as an initialized

fractional derivative as defined in part 2.2 above. Thus, we have

oD]/2 fO)+bf(t)=O, t>0, v(f ,1/Z,a,O,t) isarbitrary. (5.1.5)

This may be rewritten as

od]/2 f(t)+l/t(f ,1/2,a,O,t)+bf(t)=O, t>0, Ig(f ,1/2,a,O,t)isarbitrary. (5.1.6)

The Laplace transform of equation (5.1.5) using equation (4.3) is

F(s)- -v(f ,1/2,a,O,s)_ -V(s) (5.1.7)
s l/z +b s 1/2 +b "

This equation should be contrasted to equation (5.1.2) above, they are only the same when

W(t) = -C_ (t), that is, when an impulse at t = 0 is used to initialize the fractional differential

equation!

Now the R-function and its Laplace transform [4], are given by

Rq,,(c_,c,t)=£ (O0''(t-c)(''+')q-''-I s'------m" Re(q-v)> 0, Re(s)> 0. (5.1.8)
' n=0 r((/-/--t- X)q - v) _ sq--o_ "

The general inverse for equation (5.1.7), is obtained by applying Laplace convolution integral,
t

f(t)=-IRi,2,o(-b,O,t-r)llt(r)dr t >0. (5.1.9)
0

Thus, with arbitrary 1/t(t)this provides the most general solution to equation (5.1.1), or (5.1.5). If

we take lg(t)=-CS(t) in equation (5.1.9), the result is

fq)=CRL/2.o(-b,O,t), (5.1.10)

which is identical with the result of equation (5.1.2). In the context of the initialized fractional

calculus, this might be considered as a pathological result of little interest. A more useful result

NASA/TP--2000-209943 9



wouldbeobtainedundertheassumptionof terminalinitialization,thatisapplyequation(4.4)
with q=m-p, re=l, p=l/2, and Iff(h,m,a,O,t)=O. Then

llt(f ,l/2,a,O,t)=d (f,_l/2,a,O,t)= d 1 !d, tO/2) (5.1.11)

In this evaluation ( f (t), t < O) need not be identical to ( f (t), t > 0), if f (t)is considered to be a

composite function.

5.2 Example 2
A second fractional differential equation is considered by Podlubny ([7], p. 139), and has

a special case considered by Oldham and Spanier ([6], p. 159 Q = 1, q = 1/ 2 ). The general case,

of which it is said "encounters great difficulties except when q - Q is integer or half-integer," is

given by

oD,e f(t)+oDqf(t)=h(t), C=[oD,O-'f(t)+oDq-'f(t)],__o , (5.2.11

Again, the notation 0 D,°f(t) is that of Podlubny, and refers to the uninitialized derivative. Here,

we shall assume the notation is that of this paper, that is represents the initialized fractional

derivative, and we shall relax the requirement that q - Q is integer or half-integer. The

initialization of equation (5.2.1) will be replaced by two separate ones to identify the most general

solution. Then the Laplace transform of equation (5.2.1) gives

s QF(s)+ s qV(s)= H(s)-Ilt _(f, Q,a,O,s)-V2 (f,q,a,O,s), (5.2.2)

where the lff's are subscripted for convenience. This may be written, assuming that Q > q, as

is H(s)-gt_(f ,Q,a,O,s)-gt2(f ,q,a,O,s)). (5.2.3)
F(s)= sQ_q + l j

The solution is easily written using the R-function as,
t

f(t)= fRo_q_q(-1,O,t-TXh(r)-lffl(f,Q,a,O,r)-lffz(f,q,a,O,r))dr. (5.2.4)
0

This solution may be specialized to that of Podlubny by taking Iff_ = -Ct_(t ) , 1if2 = -CzS(t )

and C = C_ + C 2, namely
i

f(t)=-CRQ_q_q(-1,O,t)+ fRo_q_q(-1,O,t-_')(h@))d_. (5.2.5)
0

The important issue here is that the form of equation (5.2.5) does not allow the effect of

continuing the past as does equation (5.2.4).

5.3 Example 3
In this example, an approach will be demonstrated in which the entire fractional

differential equation is initialized as opposed to the above examples where the individual

derivatives were initialized. We now generalize equation (5.2.1) as follows

cD_ f(t)+ cD q f (t)= h(t).

This may be rewritten as

_dpf(t)+cd,q f(t) = h(t)-v/_(f ,Q,a,c,t)-_2(f ,q,a,c,t)=h(t)-_ea_, (t) •

Now the Laplace transform of the uninitialized fractional derivative is ([3], p.60)

L_dq f(t)}: L_dq(u(t-b)f(t))}= e -b' sqL{f(t +b)}.

(5.3.1)

(5.3.2)

(5.3.3)

NASA/TP--2000-209943 10



Thus,theLaplacetransformof equation(5.3.2),for Q > q, is given by

/3f(,+c)]-
e-CSsq(s Q-q +1)= eCSa,s,,,s -Ilteq_,,s(_(h( ) ( ))

(5.3.4)

Clearly the behavior of the fractional differential equation (or the system it represents) is captured

by the function G(s)= 1/(s'l(s O-q + 1)). We now consider two time domain segments, for domain

(1) we take a I = c I= 0, and for domain (2) a z = 0, c2 = 1.

Domain (1)

Now domain (1) will be used as the initializing period for domain (2). To do this let

ha(t)= h* O) (u(t)- u(t - 1)), for simplicity here we take h* (t)= 1. We also take

f (t) = 0, V t < 0 thereby inferring V1(f, Q,0,0,t) = 16z (f, q,0,0, t) = 0. The domain (1)
solution then is given by

L{fl (,)}=
sq+l(s Q-q + 1)s

and

fl (t)=eQ-q.-q-l(--l'O't)-u(t-1)RQ-q.-q-l(-1,0,t-1)
For0<t<l, thenfl(t)=Ro_q_q_,(-1,O,t).

t>0. (5.3.6)

Domain (2)

Now for domain (2), t > 1, we consider the initialization period to be, domain (1) above,

0 < t < 1, therefore, a 2 = 0, c2 = 1, and again we take f(t) = 0, V t < 0. Further, for clarity,

we only consider the unforced problem, that is we take ha (t)= 0, therefore from equation (5.3.2)

we have

ldt° f2(t)+ldq f2(t) = -Iltl(f2,Q,O,l,t)-Ilt2(f2,q,O,l,t)=-lpreqn,(t ). (5.3.7)

The Laplace transform, using equation (5.3.3), is given by

--llfeqiv(S) (5.3.8)
L{fz (t + 1)} = e-,s q(sO-q +1)

The initialization llteq., (t) is now chosen based on ha (t), (0 < t < 1), that is the historic forcing

function, thus

l[leqw (t ) = -- ha (t ) = - (u(t )- u(t -1)), (5.3.9)

hence

IS

Substituting this result into equation (5.3.8)

1-e -s 1-e-._____'G(s) = L{fl(t)}.
e-S L{f2(t+l)}=sq+l(sQ-q +l) - s

Applying the Laplace shifting theorem, we have

L{f 2 (t)u(t-1)}=- L{f, (t)}. (5.3.12)

Thus for t > 1 we have the important result f2 (t) = fl (t) t > 1, as would be expected from a

proper initialization theory. It is not possible to obtain such results from the contemporary theory
referenced earlier.

(5.3.10)

(5.3. i 1)
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Summary

This paper proves the need for an initialized fractional calculus. The paper presents the
definition sets required for initialized fractional calculi. Two underlying bases have been used,
the Riemann-Liouville based fractional calculus and the Grtinwald based fractional calculus (by

reference).
The significant result is that when fractionally differintegrating with respect to t that a

function of t is required as an initialization as opposed to the constant initialization used in the

integer order calculus.
Two types of initialization are introduced "terminal initialization" and "side

initialization". Proofs of Ross' criteria and the initialization constraints that ensue from the

criteria have been referenced. Corrected forms for the Laplace transforms for fractional

differintegals that properly account for the initialization function have been presented.

Commonly studied fractional differential equations have been solved to demonstrate the various

aspects of initialization.
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