Session 4: Innovative Materials Applications

TransHab Materials Selection

Michael D. Pedley, Brian Mayeaux

NASA-Johnson Space Center
Manufacturing, Materials, and Process Technology Division
TransHab Materials Selection

crew habitation

crew support

environmental control

Micrometeroid/orbital debris protection

radiation protection

Acknowledgments: Tim Burns, Joe Lovoula, Benny Ewing, Jeremy Jacobs, Rajib Dasgupta

Mike Pedley, Brian Mayeaux
September 19, 2000
Location of TransHab on the ISS

Node 1
Node 2
Node 3
U.S. LAB
ISS TransHab
Nadir
Multi-Layer Inflatable Shell

External Thermal Blanket

Meteoroid/debris Shielding

Bladder Restraint Layer

Redundant Bladders

Internal Scuff Barrier

Window

Mike Pedley, Brian Mayeaux
September 19, 2000
Multi-Layer Inflatable Shell
TransHab Functions

• Crew Habitation Functions:
 – Private Sleeping Compartments
 – Food Preparation
 – Food Consumption
 – Food Stowage
 – Full Body Cleansing
 – Earth Viewing
 – Stowage (Personal, Food, Water)

• Crew Support Functions:
 – Social Gathering
 – Meeting Area
 – Private Gathering
 – Crew Health Care
 – Exercise
 – Housekeeping
 – Stowage
 – Radiation Protection
TransHab Materials Requirements

- Structural integrity
 - Hold 1 atm pressure differential
- Deployment in various thermal conditions
- LEO environment compatibility
 - Atomic oxygen
 - Ionizing Radiation
 - Plasma
 - meteoroids and debris
- Material properties/inflatable compartments
 - nonflammable
 - low offgassing
 - resistant to fungus and microbial growth
Expected Thermal Environment

- In Shuttle payload bay:
 - Approximately 20 °F average “bulk” temperature
 - Assuming no internal heat source
 - Based on engineering judgement, thermal analysis not yet performed

- At time of deployment:
 - Approximately 0 °F average “bulk” temperature
 - Assuming no internal heat source
 - Some local temperatures may be as low as -20 °F
 - Based on engineering judgement, thermal analysis not yet performed

- -20 °F expected material temperature spec. (-30 °F cold temperature limit for non-silicone mat’ls)
 - Heaters in seal region and core will be implemented if thermal analysis shows temperatures < -20 °F at deployment
Materials Selection Challenges

- Materials currently baselined or under consideration require further development, and their structural integrity must be sustained in a variety of environments.
- The finished shell, with multiple layered elements and a unique shape, requires the development of unique fabrication techniques for bladder seals and bonding.
- Progressive testing program will develop fabrication techniques and provide correction for currently unforeseen fabrication problems.
- An integral water tank is a new technology that requires further laboratory testing and engineering development.
Bladder Restraint Layer Materials

- Kevlar (Aramid) fibers
 - Bladder reinforcement
 - No degradation/embrittlement at cryogenic temps.
 - Meteoroid/Debris shielding
 - Bumper layer reinforcement
 - Scuff barrier
 - Kevlar felt cloth adds puncture resistance and protection from abrasion with other components
 - Applied early in manufacturing process to prevent handling damage
 - Assembled to bladder material using adhesive
Bladder Assembly

- Three bladders, separated by bleeder cloth and sealed to the interface at the bulkhead

- Each bladder gore cut out from (Polyurethane/Saran film) and heat sealed together

- Bladders indexed to each other; tabs provided for indexing to restraint and inner layers
Bladder Materials Requirements

- **Evaluation Criteria**
 - Must exhibit cold temperature ductility
 - % elongation @ -50 °F and -30 °F relative to Ambient Temperature.
 - No delamination between gas barrier and polyurethane
 - Must pass toxic offgassing
 - Must pass permeation
 - Leak rate not to exceed 2 cc/100 sq.in./24hr/atm
 - Must exhibit flex cracking resistance
 - Use Permeation testing to verify defect free samples
 - Must pass puncture test
Bladder Materials Testing

- Puncture resistance at -30 °F & 0 °F
- Triple point fold test at -30 °F & 0 °F
- Cut slit method tensile tests
- Permeability testing of 50% elongation at break samples
- Cold temperature bally flex testing
- SEM analysis of cold temperature tensile fracture surfaces and component layers
Bladder Materials Selection

• Polyethylene/ethyl vinyl alcohol/nylon laminate
 – light weight, low density
 – good offgassing/toxicity
 – low permeability (0.07 cc/100 in²·day·atm)*
 – very brittle at cold temperatures (flex cycling, puncture tests)

• Polyurethane/Saran laminate
 – higher permeability (0.32 cc/100 in²·day·atm)*
 – adequate mechanical integrity at cold temperatures (flex cycling, puncture tests)

• Tedlar-Mylar-Polyurethane-Polyester Scrim
 – higher permeability (barely meets requirement)*
 – poor mechanical integrity at ambient temperature (flex cycling, puncture tests)

* 2.0 cc/100 in²·day·atm requirement
Bladder Materials Selection

- -30 °F & -50 °F testing to characterize mechanical properties
 - Material Properties at Room Temperature after 100% Elongation of Peak Load
 - Material Properties at Room Temperature after 50% Elongation of Break

-30 °F Typical Tensile Stress Curve

-50 °F Typical Tensile Stress Curve

Stress(PSI) vs. Elongation(in)
Stress(PSI) vs. Elongation(in)
50% Loading of Break Elongation at -50 °F

- Cracking in the polyurethane only
- Verified that these cracks are not thermally induced by examining unloaded samples
- Cracks in the polyurethane suppressed by thin saran layer
Bladder Materials – Future Testing

- Polyurethane/Saran
 - Thickness (4.75mil, 6.75mil, 12.75mil)
 - Seam Testing of Heat Seals
 - Tensile, Permeation and Bally Flex Testing
 - Adhesive Testing and Evaluation
 - S-Flex Testing of Bladder Layup
 - Testing to Determine Elongation Properties of Two Individual Components Saran and Polyurethane
 - Bally Flex Testing will continue past the 3000 cycles currently completed
 - Cold Temperature Laminate Failure Without Loading
Meteoroid/Debris (MMOD) Shielding

• Shield Requirements
 – meet or exceed ISS requirement for probability of no penetration

• Design
 – based on ISS multishock shield (Kevlar/Nextel)
 – shield layers separated by foam spacers
 – manufactured in gores similar to bladder
 – gaps in foam allow MMOD to fold
 – vacuum-packed to minimize folded volume, foam expands during deployment/inflation
 – all fabric system
 – state of the art in hypervelocity impact protection
Meteroid/Debris Protection Materials

- Test Matrix
 - Large historical data base on ceramic based bumper shields
 - Over 50 shots completed by TransHab Program at JSC/WSTF (6.5 km/sec.)
 - Sub Scale
 - Full Scale
 - Variety of Configurations
 - Current design viable solution to meet ISS requirements
 - 12 Full scale shots underway to determine ballistic limit curve
Multilayer Insulation (MLI)

- **Requirements**
 - Provide Thermal Insulation
 - Atomic oxygen protection
 - Electrically grounded
 - Foldable for launch packaging
 - Vented
 - Not load bearing

- **Design**
 - Based on ISS standard MLI design
 - Beta Cloth outer layer protects against atomic oxygen attack (aluminized on inside to block light transmission)
 - 20 layers of reinforced double aluminized Mylar with inner and outer cover of reinforced double aluminized Kapton
 - Atomic oxygen protection and MLI split into two separate layers
 - Deployment system on separate load bearing layer between MLI and Beta Cloth
Manufacturing Processes

• Key Special Processes
 – Adhesive bonding to bladder materials
 – Sewing, weaving
 – Folding, packing
 – Control of foreign materials in-and-around shell and bladder
 • bladder damage (sewing equipment, fasteners, sharp objects)
 • contamination control

• Key Controlled Materials
 – Bladder material
 – Adhesives
 – Kevlar restraint layer material
Project Status

• Remains candidate for ISS Habitation Module

• In competition with aluminum Habitation Module (shell fabricated at MSFC several years ago, not outfitted)
 – Transhab provides higher potential for long-term applications, higher volume
 – Aluminum Hab provides lower risk, lower cost