AR-40 Ar ‘AGE’ OF BASALTIC SHERGOTTITE NWA-3171.
Jisun Park1 and Donald D. Bogard, ARES, NASA-JSC, Houston, TX 77058. 1NASA Postdoctoral Fellow, JISUN.PARK@NASA.GOV

North-West-Africa 3171 is a 506 g, relatively fresh appearing, basaltic shergottite with similarities to Zagami and Shergotty, but not obviously paired with any of the other known African basaltic shergottites [1,2]. Its exposure age has the range of 2.5-3.1 Myr [3], similar to those of Zagami and Shergotty [4]. We made 39Ar-40 Ar analyses of a “plagioclase” (now shock-converted to maskelynite) separate and of a glass hand-picked from a vein connected to shock melt pockets. Plagioclase was separated using its low magnetic susceptibility and then heavy liquid with density of <2.85 g/cm^3.

The 39Ar-40 Ar age spectrum of NWA-3171 plag displays a rise in age over 20-100% of the 39Ar release, from 0.24 Gyr to 0.27 Gyr. The first 20% of the 39Ar release involves terrestrial weathering products characterized by adsorbed terrestrial Ar and likely terrestrial K contamination. Over the last 80% of the 39Ar release, constant values of the 36Ar/37Ar ratio indicate that essentially all 36Ar released is cosmogenic. An isochron plot (36Ar/39Ar vs. 39Ar/36Ar) of these data (R^2=0.996) has a slope corresponding to an age of 225 ±4 Myr. Essentially the same age is obtained whether we use total 36Ar or correct for trapped 36Ar. A radiometric formation age for NWA-3171 has not yet been reported. However, the Ar-Ar age spectrum of NWA-3171 closely resembles that of Zagami, and the Arrhenius diffusion plots of 39Ar for the two shergottites also are similar. Thus, the “true” age of NWA-3171 may be similar to the Zagami age (177 ±3 Myr; [5]). This implies NWA contains an extra component of 40Ar, not accompanied by significant trapped 36Ar, an inference that we have made for Zagami as well (Bogard & Park, this volume). We suggest this excess 40Ar was inherited from the basaltic melt.

The 39Ar-40 Ar age spectrum for the glass inclusion is very different and shows apparent Ar-Ar ages ranging between 0.3 and 1.9 Gyr. Variations in the 36Ar/37Ar ratios indicate release of trapped 36Ar throughout most of the extraction. An isochron plot of 36Ar/40 Ar vs 39Ar/39Ar suggests the release of terrestrial Ar in the first ~30% of the 39Ar release, and high K/Ca ratios in these extractions also suggest terrestrial weathering. We used trapped 36Ar in the isochron by subtracting a cosmogenic 36Ar component obtained from average data reported for Zagami and Shergotty whole rock [4, 6-8]. Measured 39Ar/37Ar ratios were used to apportion this 36Ar component over individual releases. The temperature extraction data of 780-1160 ºC (corresponding to ~37%-93% of the 39Ar release) define a mixing line between a radiogenic component and Martian atmospheric Ar with 40Ar/36Ar ≅1800, consistent with previously reported values for Mars atmospheric Ar [9]. Like other impact glasses in shergottites, NWA-3171 glass contains martian atmosphere incorporated at the time of impact formation, and does not directly yield a formation age.