J. Craig McArthur
Ares I Upper Stage Deputy Manager
September 9, 2008

Ares I Crew Launch Vehicle Upper Stage/Upper Stage Engine Element Overview
What is the Upper Stage Mission?

- The Ares I Upper Stage is an integral part of the Constellation Program transportation system.
- The Upper Stage will provide guidance, navigation, and control (GN&C) for second stage of ascent flight for the Ares I launch vehicle.
- The Saturn-derived J-2X Upper Stage Engine will provide thrust and propulsive impulse for second stage of ascent flight for the Ares I launch vehicle.
- The Upper Stage is responsible for the avionics system for the entire Ares I.

“The next steps in returning to the Moon and moving onward to Mars, the near-Earth asteroids, and beyond, are crucial in deciding the course of future space exploration. We must understand that these steps are incremental, cumulative, and incredibly powerful in their ultimate effect.”

– NASA Administrator Michael Griffin
October 24, 2006
Building on a Foundation of Proven Technologies
– Launch Vehicle Comparisons –

Space Shuttle
- Height: 56.1 m (184.2 ft)
- Gross Liftoff Mass: 2,041,166 kg (4.5M lbm)
- 25 MT (55k lbm) to Low Earth Orbit (LEO)

Ares I
- Height: 99.1 m (325 ft)
- Gross Liftoff Mass: 907,185 kg (2.0M lbm)
- 25.6 MT (56.5k lbm) to LEO

Ares V
- Height: 109.7 m (360 ft)
- Gross Liftoff Mass: 3,374,910 kg (7.4M lbm)
- 63.6 MT (140.2k lbm) to TLI (with Ares I)
- 55.9 MT (123k lbm) to Direct TLI
- ~143.4 MT (316k lbm) to LEO

Saturn V
- Height: 110.9 m (364 ft)
- Gross Liftoff Mass: 2,948,350 kg (6.5M lbm)
- 45 MT (99k lbm) to TLI
- 119 MT (262k lbm) to LEO
Ares I Elements

Upper Stage
- 138k kg (302 K lbm) LOX/LH₂ prop
- 5.5-m (18 ft) diameter
- Aluminum-Lithium (Al-Li) structures
- Instrument unit and interstage
- Reaction Control System (RCS) / roll control for first stage flight
- Primary Ares I control avionics system
- **NASA Design / Boeing Production ($1.12B)**

Instrument Unit
- Primary Ares I control avionics system
- **NASA Design / Boeing Production ($0.8B)**

Upper Stage Engine
- Saturn J–2 derived engine (J–2X)
- Expendable
- **Pratt and Whitney Rocketdyne ($1.2B)**

Stack Integration
- 927 K kg (2.0 M lbm) gross liftoff weight
- 99 m (325 ft) in length
- **NASA-led**

First Stage
- Derived from current Shuttle RSRM/B
- Five segments/Polybutadiene Acrylonitrile (PBAN) propellant
- Recoverable
- New forward adapter
- Avionics upgrades
- **ATK Launch Systems ($1.8B)**

Orion CEV

Encapsulated Service Module (ESM) Panels

Interstage

DAC 2 TR 5
National Aeronautics and Space Administration
Ares I Upper Stage

Instrument Unit (Modern Electronics)

Helium Pressurization Bottles

Al-Li Orthogrid Tank Structure

Common Bulkhead

LOX Tank

LH₂ Tank

Feed Systems

Ullage Settling Motors

Roll Control System

Thrust Vector Control

Composite Interstage

Propellant Load: 138k kg
Total Mass: 156 K kg
Dry Mass: 17.5 K kg (38.6 k lbm)
Dry Mass (Interstage): 4075 kg (8,984 lbm)
Length: 25.6 m (84 ft)
Diameter: 5.5 m (18 ft)
LOX Tank Pressure: 344.7 k Pascal (50 psig)
LH₂ Tank Pressure: 289.6 k Pascal (42 psig)
Upper Stage Engine Key Requirements and Design Drivers

Nominal Vacuum Thrust
- Nominal = 294,000 lbs
- Open-loop control

Operational Life = 4 starts and 2,000 seconds (post-delivery)

Mixture Ratio
- Nominal = 5.5
- Open-loop control

Engine Gimbal
- 4-degree square
- drives design of flexible inlet ducts and gimbal block

Health and Status Monitoring and Reporting
Data Collection for Post-Flight Analysis
Engine Failure Notification
- drives towards controller versus sequencer
- drives software development and Validation and Verification (V&V)

Minimum Vacuum Isp = 448 sec
- drives size of nozzle extension
- drives increased need for altitude simulation test facility
- Nozzle Area Ratio 92:1

Altitude Start and Orbital Re-Start
- Start at > 100,000 feet (ft.)
- Second start after 5 days on orbit

Secondary Mode Operation
- Thrust = ~82%
- MR = 4.5
- Vacuum Thrust 242,000 lbs

Natural and Induced Environments
- first-stage loads on Ares I
- in-space environments for Ares V
The J-2X Heritage: Avoiding Clean-Sheet Design

Gimbal Block
- Based on J-2 & J-2S design
- Potential upgrade to more modern, demonstrated materials

Turbomachinery
- Based on J-2S MK-29 design
- Beefed up to meet J-2X performance
- Altered to meet current NASA design standards
- Helium Spin Start

Gas Generator
- Based on RS-68 design
- Scaled to meet J-2X needs
- Pyrotechnic Igniter

Engine Controller
- Based on RS-68 design and software architecture

Tube-Wall Regeneratively-Cooled Nozzle Section
- Based on J-2/J-2S and long history of RS-27 success (Delta II/III)

Heat Exchanger
- Based on J-2 experience on Saturn S-IVB Stage

Flexible Inlet Ducts
- Based on J-2 & J-2S ducts
- Adjusted to meet J-2X performance
- Altered to meet current NASA design standards

Open Loop Pneumatic Control Valves
- Similar to J-2 and J-2S design
- Sector ball design traceable to XRS-2200 and RS-68

Main Injector
- Based on RS-68 design to meet Isp
- Augmented Spark Igniter

HIP-bonded Main Combustion Chamber
- Based on RS-68 demonstrated technology

Metallic Nozzle Extension
- New Design
What progress have we made?

♦ **Programmatic Milestones**
 - Completed US System Requirements Review and System Definition Review, and Preliminary Design Review
 - Contracts awarded for building the upper stage and instrument unit
 - Request for Proposal released for Manufacturing Support and Facility Operations Contract (MSFOC) at Michoud Assembly Facility

♦ **Technical Accomplishments**
 - Robotic Weld Tool now in operation at MSFC
 - US TVC Testing
 - US Structural Test Panels
 - Avionics Computer Test
 - First foam spray for cryogenic systems
 - First Heavy Weight Motor Test and first Ullage Settling Motor Igniter Hot-Fire
 - Al-Li 2014 dome qualification article

For more information go to www.nasa.gov/ares
Upper Stage Low Cost Strategy

♦ Upper Stage acquisition strategy maximizes price competition
 - Minimal proprietary items
 - NASA in-house design with commercial production
 - Large supplier base for components
 - Boeing approach maintains competition from large supplier base
 - Procure Sustaining Engineering and Operations using IDIQ (buy it by the yard)

♦ Total cost of ownership is addressed early in the design cycle
 - Safety emphasized in all phases of design and production
 - Value Stream Mapping of the entire manufacturing, test, and operations flow
 - Design Production and Ops flows along with the Upper Stage product
 - Design for Production and Operations
 - Boeing provides “Producibility” input to the NASA Design Team
 - Optimized Manufacturing and Production Plans
 - Design for low cost manufacturing to minimize "monuments" in the production flow
 - Operation Concept Analysis - to minimize "monuments" in the operations flow
 - Depots (no depot at KSC or SSC)
 - Support equipment (flexible support equipment)
 - Workforce (no standing army)
Ares I and V Production at Michoud Assembly Facility (MAF)
Test Facilities To Support J-2X Development

♦ SSC Test Stand A-1
 • Powerpack testing
 • Engine systems development testing
 • Transferred from SSME to J-2X November 2006
 • Refurbished in 2007
 • Powerpack IA testing completed in 2008

♦ SSC Test Stand A-2
 • Development and certification engine testing
 • Pseudo-altitude testing with passive diffuser
 • Engine performance verification
 • Engine configuration – no nozzle ext & stubby ext
 • No engine gimballing
 • Engine “Acceptance Series” type testing
 • Transfer from SSME to J-2X in July 2009/Testing begins April 2010
Test Facilities (cont’d)

♦ SSC A-3 Test Stand
 - Development and certification engine testing
 - Performance at simulated altitude (80,000 ft – 100,000 ft)
 - Engine configuration – no nozzle ext, stubby extension, and full nozzle extension
 - Nozzle extension development and certification (4 units)
 - Engine gimballing
 - Engine Performance verification
 - Vertical position hot-fire testing
 - May 2007 Authority to Proceed
 - Fall 2008 structural steel erected
 - June 2010 Ready to Test
J-2X Testing
Operational Flow

1. Engine Assembly SSC, Bldg. 9101
2. Calibration & Acceptance Test SSC, new A-3 stand
3. 2nd E&M SSC, Bldg. 9101
4. Stage Integration MAF
5. Prep for Transport MAF
6. Transport to KSC via Pegasus Covered Barge
7. Ares I Vehicle Assembly & Test KSC, VAB
8. Ares I Pad Ops & Launch Prep KSC, Pad 39 Complex

Flow Diagram:
- 4.1 Receiving inspection
- 4.2 Stage stack
- 4.3 CLV integration test
- 4.4 Roll to launch pad
- Wet dress rehearsal?
 - Yes: 4.5 Wet dress rehearsal
 - No: 4.6 Rehearsal recycle
- 4.7 Launch preparation
- Launch?
 - Yes: To 5.0
 - No: 4.8 Launch scrub/abort

Sample flow from the J-2X Concept of Operations

Graphic representation of overall J-2X Concept of Operations
Boeing, working with NASA, Reduced Assembly Flow Over 100 days

Merged Manufacturing Flow

- Manufacturing Value Stream Map
 - Vertical Tack and Weld
 - Horizontal TPS Application
- Producability Summit
- Manufacturing Plan
- Manufacturing Floor Plan at Michoud
- Tooling Design and Fabrication

Common Test Cell

- Metrics
 - NASA Baseline: 420 days
 - Boeing Contract: 347 days
 - Merged VSM: 320 days
 - With learning: <300 days
Manufacturing & Assembly Weld Tools

Robotic Weld Tool (RWT) MSFC Bldg 4755
gore-gore, dome-y ring, dome-fitting
Self-Reacting Friction Stir Welding (FSW)

Vertical Weld Tool (VWT) Barrel-Barrel, Conventional FSW

Vertical Circumferential Weld Tool Concept
Conclusion

♦ Building on the heritage of the Apollo and Space Shuttle Programs, the Ares I US and USE teams are utilizing extensive lessons learned to place NASA and the United States into another great era of space exploration
 - Ares I team must build beyond its current capability to ferry astronauts and cargo to Low Earth Orbit
 - To reach for Mars and beyond, the team must first reach for the moon
 - We are using the best of NASA to design the stage, and the best of industry to build the stage

♦ NASA, Boeing, and PWR teams are now integrated, working together, and making good progress
 - Designing and building the Ares I Upper Stage to minimize:
 - Cost risks
 - Technical risks
 - Schedule risks

“This Nation has tossed its cap over the wall of space, and we have no choice but to follow it.”

-- President John F. Kennedy, 1962