Lunar Module Communications
Objectives

• Describe the different types of antennas on the Lunar Module

• Describe the different communications paths during Earth line of sight periods

• Describe the different communications paths during periods when there was no Earth line of sight

• Describe the different communications paths during Lunar Surface operations

• Describe the interfaces to and function of the Signal-Processing Assembly (SPA)

• Describe the interfaces to and function of the Instrumentation system
Lesson Outline

1. Gotchas in reading the Apollo era documents
2. Lunar Module Antennas and Functions
3. Earth Line of Sight Communications Links
4. No Earth Line of Sight Communications Links
5. Lunar Surface Communications Links
6. Signal-Processing Assembly
7. Instrumentation System
8. Some Communications Problems Encountered
Apollo Document Terminology

Line of Sight (LOS) – non-obstructed, point to point path. Don’t confuse with the modern term of Loss of Signal.

Very High Frequency (VHF) – a frequency band used by the Lunar Module for communications. We now call the specific frequencies used by the LM, Ultra-High Frequency (UHF). They are the same set of frequencies used by the shuttle program.

Manned Spaceflight Network (MSFN) – the ground communications network that support communications links between the control center and the vehicles. We now refer to these assets as the Ground and Space Network.

Megacycles (MC) – an older terminology used in Apollo era documents for what we now more commonly call megahertz (MHz).

Ranging – the determination of the distance to a target based upon sub-carrier, turnaround tones (S Band and VHF)
Antennas

EVA Antenna

Omni-directional

VHF

Communications between the LM and the EVA crew
Antennas

VHF Antennas (2)

Omni-directional

Communications between the LM and CSM
Antenna

S Band Steerable Antenna

Unidirectional

Gimbaled Movement

Crew Manually Points

Auto-tracking

Communications between the LM and MSFN
Antennas

- S Band Inflight Forward Antenna
- S Band Inflight Aft Antenna

 Omni-directional
 Only one antenna at a time
 Communications between the LM and MSFN
Antennas

Lunar Stay usage

EVA Setup

Point at Earth

Prime communications link between the LM and MSFN during lunar stay

S Band Erectable Antenna
Line of Sight

Earth Line of Sight

Good Earth Signal

No Earth Signal

Not To Scale
Earth Line of Sight Comm

Note:
296.8 MHz = VHF Channel A
259.7 MHz = VHF Channel B

Duplex Operations = Transmit and Receive on different frequencies
Earth Line of Sight Comm

Note:
296.8 MHz = VHF Channel A Prime
259.7 MHz = VHF Channel B Backup

Simplex Operations = Transmit and Receive on the same frequency.
Earth Line of Sight Comm
Earth Line of Sight Comm

Voice Ranging
2101.8 MHz
Earth Line of Sight Comm

Voice
Data (51.2 kbps)
Ranging
2282.5 MHz
No Earth Line of Sight Comm

Simplex Operations = Transmit and Receive on the same frequency

VHF
296.8 MHz
Voice
No Earth Line of Sight Comm

Data from the LM would be recorded on the CSM and played back to the ground when the CSM was in Earth LOS.

About two hours of recording time on the CSM
Lunar Stay Comm

2282.5 MHz Voice and Data Ranging

2101.8 MHz Voice Ranging

S Band Antenna

Mode 1 = Frequency Modulation, High Power (20 watts) included TV
Mode 2 = Phase Modulation, Low Power (.75 watts) without TV
Each leg of communications took about 1.5 seconds, so turnaround time was a total of 6 seconds for response.
Lunar Stay Comm
EVA Communications

S Band
2101.8 MHz
Voice

VHF
296.8 MHz
Voice

Extravehicular Communications System (EVCS)

EVCS 1
EVCS 2
Lunar Stay Comm
EVA Communications

EVCS 1 served as return link hub for EVA voice and data.

VHF 279.0 MHz
Voice and Data
Lunar Stay Comm
EVA Communications

- **S Band**
 - 2282.5 MHz
 - Voice and Data (LM, TV and EVA)

- **VHF**
 - 259.7 MHz
 - Combined Voice and Data

EVCS 1
EVCS 2
Lunar Stay Comm

Lunar Rover Communications

- **2282.5 MHz**: LM Data (No EVA LOS)
- **2265.5 MHz**: TV, EVA, Voice
- **2101.8 MHz**: Voice and Camera Commands

Lunar Communications Relay Unit (LCRU)

EVCS 1

EVCS 2
Signal Processing Assembly

All signals transmitted or received by the comm subsystems are processed here.

Instrumentation System
- Recorder
- LM Data

Radio Frequency Systems
- S Band
- VHF

Signal-Processing Assembly (SPA)

CREW CONFIGURED

Commander
Sys Engineer
Audio/BioMed
Instrumentation System

LM Instrumentation Subsystem

- Out-of-Tolerance Indications To Crew
- Subsystem Status Indications To Earth
- Subsystem Status Sensors
- Audio From Crew
- Sync And Timing
- Recording Of Audio

From Crew to LM Instrumentation Subsystem

To Earth from LM Instrumentation Subsystem
LM Communications Problems

Improper Systems Configuration
 MSFN Configurations
 Apollo 9 – Loss of Voice to LM
 Crew Configurations
 Apollo 11 – LM Pilot Intermittent EVA Voice
 Apollo 14 – No EVA Voice During Checkout
 Apollo 15 – No CSM/LM VHF Voice During Lunar Descent

S Band Steerable Antenna Problems
 Antenna Oscillations
 Gimbal Hardstops/LM Body Blockage

Hardware Failures
 Apollo 9 LM Pilot Audio System
 Apollo 16 Steerable Antenna Failure
Lunar Module Communications Systems

S Band System – Voice and Data link between LM and MSFN
Ranging Data between LM and MSFN

VHF System – Voice and Data link between LM and CSM
Voice and Data link between LM and EVA
Ranging Data between LM and CSM

Radio Frequency Systems Usage –
During Earth Line of Sight
During No Earth Line of Sight
During EVA Operations

Function and Interfaces of the Signal Processing Assembly and the Instrumentation System
Objectives

• Describe the different types of antennas on the Lunar Module

• Describe the different communications paths during Earth line of sight periods

• Describe the different communications paths during periods when there was no Earth line of sight

• Describe the different communications paths during Lunar Surface operations

• Describe the interfaces to and function of the Signal-Processing Assembly (SPA)

• Describe the interfaces to and function of the Instrumentation system
Lunar Module Communications