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List of Acronyms 

ACK Acknowledgment 

APID Application Identifier 

BC Bus Controller (for MIL-STD-1553B bus) 

b bit 

B Byte (8 bits) 

BIT Built-In-Test 

CSR Configuration and Status Registers 

FIFO First-In, First-Out 

FAT Forwarding Address Table 

FPGA Filed Programmable Gate Array 

GSE Ground Support Equipment 

HW Hardware 

K 103 in the context of communication (data rates); 
210 in the context of memory space (storage) 

LUT Look-up Table 

LVDS Low Voltage Differential Signaling 

M 106 in the context of communication (data rates); 
220 in the context of memory space (storage) 

Mbps 106 bits per second 

MBps 106 bytes per second 

NVMem Nonvolatile Memory, Flash Memory 

PCB Printed Circuit Board 

PDU Power Distribution Unit 

PIM Physical Interface Module 

PROM Programmable Read-only Memory 

RAM Random Access Memory 

RAT Return Address Table 

RPTM Reconfigurable Protocol Translation Module 

RT Remote Terminal (for MIL-STD-1553b bus) 

SpW SpaceWire 

SoC System on Chip 

SW Software 

URTM Universal Reconfigurable Translation Module 

UUT Unit Under Test 

VHDL VHSIC Hardware Description Language 
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1 Overview 
 

1.1 This Document 
The following describes the Final Report for the Universal Reconfigurable Translation Module, or 

URTM. URTM was developed by Sigma Space Corp. for NASA to translate specific serial protocols, 
both logically and physically. At present, the prototype configuration has targeted MIL-STD-1553B, 
IEEE 1394b (Firewire), and ECSS-E-50-12A (SpaceWire). 

1.2 Relevant Documentation and Manuals 
 In addition to the documents and manuals listed below, all Sigma generated documentation and 
applicable datasheets for components used within the design may be helpful. 

1) Merlin+ Software Manual, version 3.4, Excalibur Systems 

2) RT1553FE MIL-STD-1553 Remote Terminal Front End & RT1553 ERL Extended 
Reliability Logic MIL-STD-1553 Remote Terminal Front End, FPGA Core User’s Manual, 
Rev 2.6.0 May 2007, Sital Technology Ltd. 

3) BC1553FE MIL-STD-1553 Bus Controller Front End FPGA Core User’s Manual, Rev.1.1, 
December 2006, Sital Technology Ltd. 

4) STAR-Dundee SpaceWire Link Analyser User Guide, Rev. 2.01, 07 February 2007 

5) James Webb Space Telescope (JWST) SpaceWire Point-To-Point Link IP Core 
Specification, “Deluxe” Version, Rev. -, October 10th, 2007 

6) FireLink Evaluation User Guide, Dap Technology 

7) FireLink Basic 1394b Link Layer Controller IP Core, Version 1.00, Dap Technology 

8) 1394 Analyzer Operation Manual, Hardware and Software Guide, Dap Technology 

9) AS5643 Rev. A, IEEE-1394b Interface Requirements for Military and Aerospace Vehicle 
Applications, SAE Aerospace Standard 

10) URTM User’s Guide, Sigma Space Corporation, September 30, 2008. 



3 

2 URTM Implementation and Performance 
The objectives of the contract (as per the SOW) were as follows: 

 
Study the feasibility of a configurable URTM to translate serial link data and resolve technical issues, 
and of using the concept for a universal serial interface to space computer and/or communication 
boards.  Based on the results, design, develop, document, and deliver engineering prototype model 
of the URTM with a path to spaceflight.   
The specific objectives of the URTM are: 

• Design and develop an engineering prototype of an universal serial link translator 
• Adapt any two point-to-point data links logically, electrically, and mechanically 
• Support popular data links for space applications 
• Automatic reconfiguration with plug-and-play 

• Simply connect the Physical Interface Modules (PIM) on either end of the 
Reconfigurable Protocol Translation Module (RPTM) 

• The RPTM  then self configures via a library of interface translation functions thus 
allowing the two data links to communicate seamlessly  

 
All of these general and specific objectives have been met.  Furthermore, protocol translation 
was demonstrated at the desired bit rates and required items have been delivered. 
 
A model, written in Python, was developed in order to demonstrate the feasibility of the planned 
protocol translation.  The structure of this model was maintained as the URTM hardware design 
was developed.  The architecture of the URTM is designed to separate the physical interfaces 
into the PIMs from the link layer protocols into the RPTM in order to facilitate the addition of 
future communication protocols.  In addition, the VHDL partitioning implements well-defined 
blocks for reading, writing and translation functions that allow for much re-use if adding a new 
protocol.  These features make the URTM hardware more “universal” than a translation of just 
one protocol to another.  The URTM is reconfigurable, since the same hardware can be used to 
perform translations between different protocols by adding a simple new hardware PIM for the 
physical interface and new VHDL code for the particular link layer.  The appropriate bitstream 
can be loaded from non-volatile FLASH memory into the reconfigurable FPGA translation chip 
after power-up, and after sensing which hardware PIMs are attached. 
 
Basic testing was performed on the completed unit to ensure that all objectives were met.  Additional 
automated testing and optimization of the FPGA timing would be beneficial to ensure robust 
operation in a user application.  It would also be beneficial to utilize the protocol translator in a real-
world application to control an instrument, rather than using just the test equipment.  Future work on 
each protocol, future protocols, and general comments are discussed at the end of this report. 

The protocol translation has been successfully modeled, translated to VHDL and tested to verify 
protocol translation using all three PIM combinations in each direction.  This was shown through both 
the Test Procedure as well as during the hardware demonstration at NASA Langley Research 
Center. 
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2.1 URTM Implementation 
 

The finished product is shown in the figures below. 

 

Figure 1: RPTM circuit board, bottom (left) and top (right). 

 

 

Figure 2: RPTM package. 
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Figure 3: IEEE 1394 connector and PIM PCB. 

 

 

Figure 4: IEEE 1394 PIM package. 
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Figure 5: MIL-STD-1553 connectors and PIM PCB. 

 

 

 

Figure 6: MIL-STD-1553 PIM. 
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Figure 7: SpaceWire connectors and PIM PCB (left) and PIM package (right). 

 

 

Figure 8: URTM system with SpaceWire PIM (left) and 1553 PIM (right) attached to the RPTM. 
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2.1.1 Mass, Power and Volume Achievements 
An excellent compromise of all desired engineering goals have been met with a robust, functional 

solution.  The final specifications are shown in Table 1. 

Table 1: Mass, power, and volume specs for each URTM module. 

Module Mass (grams) Mass (oz) Power (Watts) 

RPTM 220 7.8 5.61 

1553b PIM 75 2.6 0.132 

SpaceWire PIM 65 2.4 0.337 

1394 PIM 80 3.0 0.825 

 

Total Volume for the URTM with SpaceWire and 1553 PIMS (excluding projections for connectors) is 
approximately 76mm x 37mm x 87.5mm  or 3” x 1.40” x 3.44” 

Power consumption for a flight application could likely be significantly reduced for the RPTM.  Only 
the VHDL for the two protocols involved in the translation would be loaded into the Xilinx translator 
FPGA at run-time.  In order to simplify debug of successive loads across all protocols, and since the 
FPGA is large enough, Sigma selected to synthesize a “superset” of VHDL for all protocols into the 
Xilinx FPGA and used the PIM selection bits to multiplex the appropriate circuitry internally.  Note 
also, the Xilinx ChipScope Pro option that assisted in debug efforts utilizes internal resources, 
primarily memory, which has a significant impact on power consumption.  Note that the additional 
power required for debug activities is not reflected in the in Table 1.  Smaller, FIFO buffers for the 
various protocols and sized for a specific application or mission, can also be used to save power, 
provided that the system-level use of the URTM allows for such savings. 

2.1.2 Design Considerations with Regard to Space Flight 
The following design considerations were implemented in order to make the URTM design 
readily migratable to a space flight application: 
 
• Hooks for scrubbing (Actel / Xilinx) via Slave SelectMap Interface 

• Use of flight-like or flight-equivalent components 

• Room in Xilinx for TMR and other SEE mitigation approaches 

• Triplicated I/O on Xilinx except for bi-directional signals 

• Conductively cooled mechanical design 

• Double-step corners for EMI 

• Outgassing holes 

• Flying leads on external connectors for mechanical decoupling 

• Robust interconnect with ample compliance in the “Z” direction for high vibration environments 
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2.1.3 Flight Components 
Flight part equivalent components are available for all selected parts in existing footprints.  The 

engineering model has been populated with a variety of flight parts and commercial parts, where a 
commercial part could be used in the flight footprint.  One example is that 0402 sized resistors were 
populated on pads designed to accept an 0502 sized flight resistor component.  In other cases, such 
as with the oscillators, a dual footprint PCB design was employed that allows for the assembly with 
either the flight or commercial footprint on the same PCB. 

The stacked FLASH memory from 3D-Plus used in the URTM design is planned to be migrated to a 
TMRed version.  Initial versions shall utilize an FPGA and should be available by Q4 FY09 according 
to the manufacturer.  A flight version with an ASIC within the 3-D stack will follow shortly thereafter.  
The path to flight for this component was independently verified with both Space Micro as well as with 
3D-Plus.  The TMR’ed part is a collaboration between the two vendors. 

2.1.4 Key IP Cores and Components 
The RPTM Xilinx On-chip IP Cores include the following: 

•1553 RT: Sital RT1553FE (Designed For 50 MHz operation) 

•1553 BC: Sital BC1553FE (Designed For 50 MHz operation) 

•SpaceWire:  NASA Goddard Space Flight Center (GSFC) Space Wire Core (CD Date: 
09/12/2007) Note:  The SpaceWire buffer depth has been increased to 256 bytes 
from the original 64 bytes of the GSFC SpaceWire core.  This was to better match the 
buffer sizes of the other interfaces while still maintaining the internal core timing and 
flow. 

•1394b:  DAP Technologies FireLink Basic 

2.1.5 Key RPTM Devices & Interfaces: 
The key devices used on the RPTM card include the following: 
 
•Oscillator:    125 MHz Dual Footprint 

•Configuration Device: Actel A54SX32A-CQ84 (RT54SX32S-84CQFP) via Xilinx Slave 
SelectMap Interface 

•Console Port: Based On RS-232 Protocol, 8N1, Baud = 115200 bps Xilinx receives 
commands and transmits status via Actel FPGA to UART interface 

•Test Header: FTE-110-02-G-DV-P for Xilinx JTAG, mode pins, and assorted test 
points 

•Test Header:    FTE-110-02-G-DV-P for Actel JTAG and probe signals 

 

2.1.6 Key PIM On-Card Devices & Interfaces: 
 
The key devices used on the various PIMs include the following: 
 
•1553Transceiver:   Aeroflex UT63M143-CCX (with Q1553-70 transformers) 
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•SpaceWire:     Aeroflex UT54LVDM055LV-UPX LVDS Drivers / Receivers 
 
•1394b:   TI TSB81BA3IPFPEP (or TSB81BA3D) 1394B 3-Port Cable 

Transceiver/Arbiter with Pulse T-1062SCT (or T-1250SCT or T-
1485SCT) transformers 

 

The RPTM card contains two FPGAs, which control all functions of the URTM.  One FPGA is an 
Actel A54SX32A-CQ84.  This part has a space-flight path to the rad tolerant RT54SX32SU family.  
Therefore, this device is responsible for all FLASH memory, configuration, console communications 
functions.  For a space-flight application, it can be used to scrub the Xilinx FPGA memory during 
operation.  The other FPGA is a Xilinx XC4VLX200-10FF1513.  This part has a path to flight, as it 
has a footprint compatible column grid array (CGA) device in the radiation hardened Virtex-4 QPro-V 
family.  This device performs all translation functions for the URTM.  A more detailed list of high-level 
FPGA functions is shown below: 

Actel FPGA 

The main functions of the Actel FPGA are as follows: 

•Provides a console (UART) interface for user command and status (from both the Actel & Xilinx 
FPGAs) 

•Provides a command/status interface to the Xilinx in order to forward received commands and to 
accept status from the Xilinx FPGA 

•Provides a slave SelectMap interface to the Xilinx FPGA in order to perform configuration (and in the 
future, readback and scrubbing, if desired). 

•Provides a controller for the Flash memory stack that can identify bad blocks, perform page reads 
and writes, perform block erases, and interface with the SelectMap controller block. 

Xilinx FPGA 

The Xilinx FPGA provides all buffering functions, reader, interpreter, writer, FAT, and RAT 
functionality for the translation process.  It interfaces to the Actel FPGA for command & status 
(in addition to configuration) as well as to each PIM. 
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Functional Flow Block Diagram
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Figure 9:  URTM Functional Block Diagram 

The internal architecture of the Xilinx FPGA follows the Python model created for this project. As 
such, each protocol has a reader/interpreter module as well as a writer module.  Between these 
modules, there is a common set of forwarding address tables (FATs) for the address and sub-
address fields, return address tables (RATs) for response packet 
mapping, and packet FIFOs for the buffering of full packets prior to writing during the translation 
process.  In addition, since the user can select any two of the three PIMs for use and because the 
PIM locations (either A or B) on the RPTM are interchangeable, there is also a level of decoding a 
multiplexing not shown in the diagram, which allows for this flexibility.  With the extra multiplexing, 
internal timing is not optimal.  However, for the purposes of showing interoperability among the 
different protocols and without constraints on the A/B PIM designation, using a “superset” FPGA load 
was an excellent choice. 

Note that when translating from a protocol of a “smaller” data width to a protocol of a “larger” data 
width the URTM implements a zero-padding scheme of the translated data.  For example, when 
translating from 1553 to 1394b, 16-bit 1553 data is translated to 32-bit 1394b data fields.  If there are 
an odd number of 1553 data words, then zero-padding is required in order to generate a complete 
1394b message. 

Note also that at this time, unrecognized transactions are transmitted out of the URTM input 
FIFOs so as to prevent the URTM from hanging or stalling on bad data.  In the future, more 
complex handling and flagging can be implemented.  In many cases, an error bit is set in the 
RPTM’s Error Register.  If read, this register can alert the software that a 1394b, SpaceWire, 
1553BC, or 1553RT error has occurred in the given protocol’s reader or writer interface. 
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During debug and test, a Xilinx USB cable connected to the Xilinx JTAG signal on the test header on 
the RPTM was used.  This allowed for the decoupling of the FLASH memory loading and the 
functional translation.  Once positive results were observed, the FLASH memory was written via the 
console port as controlled by the Actel FPGA.  Upon power-up, it was noted (via register read back 
as well as by noting the power consumption on the power supply) that the Xilinx FPGA had been 
properly configured. 

Prior to protocol translation, the RPTM must be set up and configured properly based on the 
command list in URTM Console Port Command Set document.  In particular, the forwarding 
address tables (FATs) must be setup properly.  Note that there are four FATs in the URTM.  
These are:  Address FAT A –to- B, Sub-Address FAT A-to-B, Address FAT B –to- A, and 
Sub-Address FAT B-to-A.  The designation of “A” and “B” are dependent on the location of 
the PIMs – in the A or B location on the RPTM.   
The translation details are extensive and are too large to incorporate into the final report.  
However, excellent detail is provided in the previously submitted document entitled URTM 
Model Diagrams 080807.pdf.  In addition, the Python models (with extensive comments), 
contain the translation details.  As a simple example to illustrate the purpose of the FATs, one 
might consider how the 5-bit sub-address field in the 1553RT protocol might be translated to the 8-bit 
address field in SpaceWire RMAP protocol.  It is, in fact, the address FAT that allows for this re-
mapping such that the address space of one protocol is mapped (i.e. translated) into the address 
space of the other protocol.  High-level system software on either side of the protocol must plan for 
this remapping a priori and set up the URTM in advance. 

2.1.7 PIM PCB Routing and PCB Build Information 
The 1394b and SpaceWire PIMs PCBs achieved excellent matching of critical signals which is 

necessary due to the critical coupling of data and clocks and strobes  The routing reports are 
included in appendix A and B.  The 1553 PIM routing information is included for completion, but there 
were no specific matched length goals for that PIM. 

PCB Build Information: 

Note:  All boards should specify press fit connector holes as 0.028 +/- 0.002 for proper fit, per Airborn 
manufacturer instructions. 

RPTM:  10-layer stackup as defined by gerbers, FR4, .090 thickness, blind vias layers 2 to 10, 
immersion gold, electrical test, controlled impedance (100 ohms diff) on layer 1 for 7 mil traces with 
10 mil spacing, via in pad, filled vias, matched signal lengths 

1553 PIM:  2-layer stackup as defined by gerbers, FR4, .062 thickness 

1394b PIM:  6-layer stackup as defined by gerbers, FR4, .084 thickness, 110 ohm controlled 
impedance for all 1394 signals, electrical test, matched signal lengths 

SpaceWire PIM:  4-layer stackup as defined by gerbers, FR4, .084 thickness, with 100 ohm 
controlled impedance (for 7 mil lines with 10 mil spacing) and electrical test, matched signal lengths 
(less than 5% and no more than 5mm between differential pairs and also between Data and Strobe 
skews). 

Note that in Appendix A, Column 3 shows the simulated delays of signals.  It is desired to keep the 
delays between differential pairs reasonably well matched.  The relative skews are calculated and 
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presented.  The color codes help to reference the appropriate signals from the top of the list of 
signals. The highlighting serves to separate groups of signals.  In Appendix A, colors on one page of 
that section correspond to the colors on the second page of that same section.  This helps associate 
the PIM signals with the mismatch calculations.  In Appendix B, the signal lengths are identical to the 
precision of the PCB tools, so no additional analysis is necessary.  The signals are effectively 
“perfectly matched.” 

2.1.8 Software Revisions Used to Generate Design Files 
The Actel software used for the URTM design is Libero version 8.3. 

The Xilinx  software used is ISE 10.1.02. 

All license files and USB keys have been delivered to NASA. 

2.1.9 Mechanical Features 
The original and augmented conductive cooling designs are shown in Figure 10.  The augmented 

design on the left includes conductive cooling for all regulators.  Note that the extra aluminum for the 
regulators should be incorporated in the RPTM bottom panel if a new URTM case were to be 
machined.  Note also that the heights of these are critical, and should be custom machined to match 
a particular RPTM PCB due to variations in lead-forming and soldering of the components to the 
PCB.  ChoTherm was used as an interstitial material. 

Outgassing holes for RPTM and each PIM have been implemented and engineered to outgas away 
from the mounting points.  The mechanical design also incorporates an EMI enclosure with double-
corner design, a robust interconnect between the RPTM and PIMs with ample compliance in the Z-
direction (which is good for high vibration environments), and mechanically decoupled flying-lead 
connectors.  These features are shown in Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14. 

 

 

Figure 10: Conductive cooling and mounting plate underneath the URTM package. 
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Figure 11: URTM package 

 

 

Figure 12: EMI enhanced enclosure with double corner design. 
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Figure 13: Robust interconnect with ample compliance in the “Z” direction for high vibration 
environments. 

 

 

Figure 14: External Connectors are mechanically decoupled via “Flying Lead” connections for all PIM 
I/O as well as for the console port connector. 

 



 

16 

2.2 URTM Performance 
 
The URTM successfully translates packets from the 1553, 1394b, and SpaceWire protocols.  All of 
the goals regarding the protocol's bus rates have been achieved.  They are as follows: 
 
1553B:  1Mbit/sec 

This was met and verified using our 1553 test equipment. 

 
SpaceWire:  200 Mbit/sec (goal), 125 Mbit/sec (requirement) 

As stated in the contract, the goal of the SpaceWire bit rate was 200 Mbits/sec with a minimum of 
125 Mbits/sec.  The outbound (URTM to SpaceWire) bit rate was set to 200 Mbit/sec and verified 
with the SpaceWire link analyzer.  However, for the inbound traffic (SpaceWire Brick to URTM), the 
goal of 200 Mbits/sec was not met.  In the SpaceWire Brick test software, options to run at 120 
Mbits/sec or 140 Mbits/sec are available.  The translation was not  able to run at 140 Mbits/sec, but it 
was able to run at 120 Mbit/sec.  Therefore, it was confirmed that this inbound bit rate was between 
120 Mbits/sec and 140 Mbits/sec.  Note, though, that the SpaceWire Brick test software does not 
allow the specification of 125 Mbits/sec.  The 200Mbit/sec was demonstrated in that the SpaceWire 
Analyser has the capability to record the rates at which data is transferred. While transmitting nulls 
and data packets (i.e. while the link is open), the rates are shown on the bottom of the SpaceWire 
Analyser’s graphical user interface (GUI) where  there is a portion of the window indicating “A->B” 
and “B->A” rates.  In the current FPGA which provides for all three protocols in a multiplexed, 
superset fashion, the timing of the SpaceWire interface has not been optimized so it is likely that 
improvements can be made to the inbound side of the SpaceWire interface such that the 200 
Mbit/sec rate (i.e. the goal) is achievable. 
 
1394b:  800 Mbits/sec (goal), 400 Mbit/sec (requirement) 

The 800 Mbits/sec rate was achieved with both a commercial 1394b connector initially 
populated on the 1394b PIM and later, with a military style 38999-type connector.  The 
commercial connector was then removed from the PIM. 
 
Currently, streaming / isochronous packets between 1394b and SpaceWire are not 
supported.  While the VHDL to perform such translation has been written, no testing or 
debugging of this packet translation has been performed.  It should be noted that the URTM 
modeling allows for isochronous 1394b streams to be translated to SpaceWire RMAP data 
packets.  Strictly speaking, SpaceWire does not allow for streaming packets, since it is not 
part of a recognized standard.  However, the URTM models make a provision for this to be 
accomplished by exploiting the Protocol ID standard for the benefit of mapping this type of 
packet to/from 1394b streams packets. 
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2.2.1 Throughput 
There is no stated goal for throughput in the statement of work for this contract but rather a 
minimum and goal for each protocol’s bit rate.  A throughput analysis was added per the 
COTR’s request to see the URTM is a potential bottleneck for the three protocols selected in 
this work.  All contractual goals for protocol translation would still be met even if the URTM was 
a bottleneck.  However, the translation would simply need to pause the faster of the two data 
paths and send shorter bursts of data rather than longer back-to-back packets of data. 
 
Each protocol was tested with its own unique piece of test equipment, each with its own 
constraints in terms of number of “back to back” and “at-speed” repetitive burst capabilities.  No 
custom unifying software was developed in this contract that could compare data that was sent 
by one protocol tester to data that passed through the URTM and was received by another 
protocol tester.  Such software would be essential to perform a hardware-based throughput 
analysis. 
 

A throughput analysis has been conducted on the SpaceWire interface, since it provides the smallest 
token, hence smallest pipe, and the slowest throughput. For 1553 and 1394, the same process has a 
data path that is two times (1553) or four times (1394) wider, making the SpaceWire translation the 
potential bottleneck. 

Reader Interpreter WriterRx
Queue

Tx
Queue

Packet
Queue

Dataflow Queuing Model Throughput Analys is  of RPTM 2008-Sep-29 RJ, Sigma Space Corp

Critical Circuit: Time per token = 4 clock cycles  per token (token=byte)

As s umptions : Que ue s  provide  a s ynchronous  is ola tion be twe e n Re a de r, Inte rpre te r, a nd Da ta  Links ;
Me a s ure  throughput of toke ns  a t a ny conve nie nt a rc s hown a bove ; Toke n is  the  s ma lle s t indivis ible  
unit, which is  the  byte  whe n proce s s ing SpW pa cke ts ; Critic al c irc uit de te rmine s  wors t-ca s e  e s tima te
of throughput ca pa city for the  RPTM in is ola tion, which is  the  4-s ta te  s e que nce  of Inte rpre te r, a s  this  
loop mus t comple te  the  full s e que nce  for e a ch toke n – he nce  the  re d control toke n in the  loop: 

The re fore , wors t-ca s e throughput e s timate  = 125E6 cycle s /s  x 8 bits /toke n x 1 toke n/4 cycle s
                                                                        = 250 Mbps

Conc lus ion: RPTM is  not the  bottle ne ck; ra the r throughput is  limite d by the  s lowe s t da ta  link protocol
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In conclusion, a model of the RPTM throughput shows that the minimum throughput capacity is about 
250 Mbps and that the RPTM is not the bottleneck; the bottleneck is the slowest data link. 

2.2.2 Translation Performance 
The transactions shown in Table 2 have been exercised.  Some combinations could not be exercised 
due to our test setup during this research project.  For example, testing the SpaceWire or 1394b to 
1553 when the PIM was a 1553RT did not occur.  In such a case, the URTM can only respond to a 
1553BC out on the bus.  For this to occur, the test setup would need to be a closed loop system 
wherein the BC could send a command to the SpaceWire or 1394b device via the URTM.  The 
SpaceWire or 1394b device would then respond in a timely manner via the URTM.  In the future, 
more at-speed, rigorous testing should be performed. 

Table 2:  URTM Transactions Exercised 

Tester Core Core Tester
RT, Sends Write Response 1553BC SpW Receives Write Response
RT, Sends Read Response 1553BC SpW Receives Read Response
RT, Sends Write Response 1553BC 1394b Receives Write Response
RT, Sends Read Response 1553BC 1394b Receives Read Response
BC, Sends  Write Command 1553RT SpW Receives Write Command
BC, Sends Write Command 1553RT 1394b Receives Write Command
SpW Sends Write Command SpW 1553BC RT, Receives Write Command
SpW Sends Read Command SpW 1553BC RT, Receives Read Command
SpW Sends Write Command SpW 1394b 1394b Receives Write Quadlet Command
SpW Sends Write Command SpW 1394b 1394b Receives Write Block Command
SpW Sends Read Command SpW 1394b 1394b Receives Read Block Command
SpW Sends Read Response SpW 1553RT BC, Receives Read Response
SpW Sends Write Response SpW 1553RT BC, Receives Write Response
SpW Sends Read Response SpW 1394b 1394b Receives Read Block Response
SpW Sends Write Response SpW 1394b 1394b Receives Write Response
SpW Sends RMW Response SpW 1394b 1394b Receives RMW Response
1394b Sends Write Quadlet Command 1394b 1553BC RT, Receives Write Quadlet Command
1394b Sends Write Block Command 1394b 1553BC RT, Receives Write Block Command
1394b Sends Read Block Command 1394b 1553BC RT, Receives Read Block Command
1394b Sends Write Quadlet Command 1394b SpW SpW Receives Write Quadlet Command
1394b Sends Write Block Command 1394b SpW SpW Receives Write Block Command
1394b Sends Read Block Command 1394b SpW SpW Receives Read Block Command
1394b Sends Lock (RMW) Command 1394b SpW SpW Receives Lock (RMW) Command
1394b Sends Write Response 1394b SpW SpW Receives Write Response
1394b Sends Read Quadlet Response 1394b SpW SpW Receives Read Response  

2.2.3 Test Software 
At this time, all URTM testing has been performed with the test equipment purchased under the 

project, coupled with a custom console interface software program that provides URTM specific 
needs such as access to the FLASH memory, tracking and management of bad memory blocks, and 
convenient access to URTM registers.  No custom, high level software was written to perform closed-
loop, testing. Rather, packet transmission via one protocol tester has been exercised with the 
resulting packet reception observed by the other protocol tester.  In all cases, the packet transmission 
/ reception tests have been run in a single, one-at-a-time mode.  Additionally, where possible, back-
to-back, "high rate" (limited only by the tester itself) transmission & reception testing has been 
performed.  For example, in the case of the 1553 tester, when tester is acting as a 1553 bus 
controller (BC) and the URTM has the 1553 PIM acting as a remote terminal (RT), continuous 
packets to the SpaceWire or 1394b interfaces can be sent.  Since 1553 is the slowest interface, 
running at 1 Mbit/sec, there are no concerns as continuous packets are sent to the 800 Mbit/sec 
1394b interface or the 200 Mbit/sec SpaceWire interface.  Likewise, when testing the 1394b 
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interface, any number from 1 to 999 packets can be sent to the 1553 or SpaceWire interfaces. 
 However, in this case, 1394b is the fastest interface.  It is not a fair test to send nearly continuous, or 
long burst data to the 1 Mbit/sec 1553 interface; sending to the SpaceWire interface is also 
questionable since it the bus rate is 1/4 of the 1394b rate.  In the case of the SpaceWire tester, since 
the RMAP protocol is being used, a method in which to send continuous or large burst RMAP 
packets was not determined.  Using the SpaceWire tester's CUBA software, a "batch" file of 
commands was generated and set, but this generated via a copy-and-paste approach, and therefore, 
cannot be without bounds.  In this case, six back-to-back RMAP packets were sent as fast as 
possible via the tester, and they were successfully translated to the 139b protocol. 

The transmitted packets were manually compared by visually checking that the transmitted 
command and data were correctly translated and received.  When the counter was updated by the 
receiving test equipment, one could confirm that a valid packet was received.  This means that all 
headers, data fields of proper length (as per the header information), and valid checksums (such as 
CRCs) were all generated by the URTM and sent to this receiving test equipment.  That is, the 
headers, data payload, and error correction fields were all valid for the given packet.  Since there was 
no closed-loop software to analyze all transmitted data and compare this data to received data for 
large data sets, the transmit counters and receive counters provided by the test equipment allowed 
for the validation that the total number of expected packets were sent and received properly. 

2.2.4 FPGA Utilization and Timing Performance 
The FPGA utilization for the Xilinx XC4VLX200-10FF1513, bitstream version load number 0x59 
(identified by the Scratchpad Register default value) is shown it Table 3 below. 
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Device Utilization Summary [-] 
Logic Utilization Used Available Utilization Note(s) 
Number of Slice Flip Flops 6,031 178,176 3%   
    DCM autocalibration logic 42 6,031 1%   
Number of 4 input LUTs 10,365 178,176 5%   
    DCM autocalibration logic 24 10,365 1%   
Logic Distribution          
Number of occupied Slices 9,065 89,088 10%   
    Number of Slices containing only related logic 9,065 9,065 100%   
    Number of Slices containing unrelated logic 0 9,065 0%   
Total Number of 4 input LUTs 10,996 178,176 6%   
    Number used as logic 9,568      
    Number used as a route-thru 631      
    Number used as 16x1 RAMs 56      
    Number used for Dual Port RAMs 640      
    Number used as Shift registers 101      
Number of bonded IOBs      

Number of bonded  282 960 29%   
    IOB Flip Flops 15      
Number of BUFG/BUFGCTRLs 13 32 40%   
    Number used as BUFGs 12      
    Number used as BUFGCTRLs 1      
Number of FIFO16/RAMB16s 76 336 22%   
    Number used as RAMB16s 76      
Number of DCM_ADVs 6 12 50%   

  

Table 3:  Xilinx FPGA Utilization 

The Xilinx FPGA routed completely.  Three timing violations were flagged as failed.  Two of the 
three violations had to do with the asynchronous clock-crossing boundary within the SpaceWire core 
where the 200 MHz data-strobe clock and the back-end's 125 MHz clock interact.  Per the core's 
literature, the use of multiple clocks is allowed, since the core 
should handle the interfacing properly.  Likely, the constraint should be marked as a false path, but at 
this time, this has not been investigated further.  The third issue was a clock skew issue on the 200 
MHz rising/falling edges.  As above, this has not been researched further, but by marking false paths 
properly, and by optimizing the constraints, the failed path can likely be removed. 
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The utilization of the Actel A54SX32S FPGA is shown in Table 4. 

 

SEQUENTIAL Used:  742  Total: 1080   (68.70%) 
    COMB             Used: 1432  Total: 1800   (79.56%) 
    LOGIC            Used: 2174  Total: 2880   (75.49%) (seq+comb) 
    IO w/ Clocks     Used:   52  Total:   59 
    CLOCK            Used:    2  Total:    2 
    HCLOCK           Used:    1  Total:    1 

 

Table 4:  Actel FPGA Utilization 

The Actel FPGA routed completely and met all timing requirements.  In a flight application, there 
would likely be additional logic added to perform the function of a scrubber for the Xilinx FPGA.  Note 
that depending on the encoding of the various state machines within the Actel FPGA, significant 
utilization resources were observed.  For example, the utilization ranged from approximately 68% to 
79% depending if a one-hot encoding or gray encoding was selected.  At this time, such encoding 
has not been optimized but could be optimized in the future. 
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3 Lessons Learned 

3.1 Models 
Independent validation of functionality via higher-level modeling has again proven useful and has 

also reduced the number of functional, logical, and control errors that would otherwise have 
dominated the debug effort. 

3.2 ChipScope Pro 
The ChipScope Pro tool is extremely useful for large, multi-core, system-on-a-chip type designs.  

It functions as a virtual logic analyzer with triggering capability, to see busses, control signals, and 
user selected nets.  The use of the tool saved many weeks of integration time on the URTM project. 
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4 Future Work 

4.1 Robustness Improvements 
The URTM was tested in a manual mode, not a closed-loop, rigorously tested setting.  Before 

being used in a "real" application, such testing is essential.  This kind of testing should be comprised 
of both small and large packets that are transferred via the URTM in a back-to-back, "at-speed" 
manner and with different types of packet formats intermingled.   

Other improvements that would provide robustness would be to make the URTM more resistant to 
problems and exceptional behavior.  One way to accomplish this would be to employ automatic 
flushing of FIFOs when illegal packets are received by the URTM  along with more error reporting. 

4.2 Multi-split Transaction Handling 
The address forwarding/return table was implemented in its more basic form. As is, the URTM 

supports only one virtual circuit between source and sink at a time, though in both directions (full 
duplex). Multiple virtual circuits in a given direction is not supported at this time because the 
“transaction label” is not stored and properly managed with the addressing within the forward/return 
tables. The design is well understood and documented in the presentation packages, just not 
implemented in favor of working on more challenging problems. Future work in this area can easily 
support multiple split transactions. 

4.3 SpaceWire Protocol 

4.3.1 Path Addressing for SpaceWire 
SpaceWire packets can be routed by either logical addressing or path addressing. The preferred 

approach is path addressing because it puts the complexity of routing with the routers, as opposed to 
all of the network nodes (end points). This was our preferred approach as well for this URTM 
prototype. Supporting path addressing is straightforward, only requiring a more complex 
management of the forward/return address tables.  

4.3.2 Time Codes for SpaceWire 
The SpaceWire protocol has special packets called “time codes” that support a distributed time 

synchronization algorithm. This is most important for distributed computer systems at the end points. 
There is little benefit of having a URTM bridge process time codes, as it does not currently keep time. 
However, applications in the future may have a need to have time synchronization between the two 
networked bridged by a URTM. This would require that the URTM process time codes and 
synchronize its time with the SpaceWire network so that it could, in turn, synchronize nodes on the 
bridged network. 

4.4 IEEE 1394 Protocol 

4.4.1 Asynchronous Stream Packets 
The URTM currently implements asynchronous transaction packets and is set up to support 

isochronous stream packets. This allows the best, seamless translation between the (three) targeted 
protocols. There is a third 1394 packet type called the asynchronous stream packet. It is essentially a 
combination of the former two packets: asynchronous stream packets are isochronous packets that 
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are transmitted in the asynchronous arbitration period. Asynchronous stream packets can be 
incorporated straightforwardly in future developments. 

4.4.2 SAE AS56453 Protocol 
The AS5643 protocol, sometimes referred to as “Mil-Std-FireWire,” uses full use of asynchronous 

stream packets, primarily, and only the other two packet types secondarily. So, once asynchronous 
stream packets are implemented, AS5643 protocol can be incorporated. Doing so would also require 
some lightweight, higher-level protocol on top of the data link layer where the URTM currently 
operates. The AS5643 protocol is normally implemented in software above the data link layer, which 
is hardware. AS5643 can most likely be accommodated in software, too, by making use of the 
MicroBlaze embedded microprocessor. MicroBlaze even supports C software development on a 
Linux OS. Of course, space applications requiring SEE mitigation would require that the MicroBlaze 
be replicated in a voting scheme. This is likely possible within the current FPGA resource availability 
and margins.  

4.5 Time-Triggered Ethernet Protocol 
The time-triggered Ethernet protocol, or TTE, could support interesting and useful applications in 

embedded industrial, automotive, and aerospace systems. Sigma Space has studied the feasibility of 
integrating the TTE in the existing URTM concept, architecture, and design. The technical aspects 
considered were limited in scope and detail to be high level, conceptual, logical, temporal, and 
physical. Salient features of the TTE specification and the prior art of implementation were 
considered that most impact the URTM design. Our conclusion is that integrating the TTE protocol 
would be straightforward. Indeed, it is anticipated that the task would be easier than the work 
required to accommodate IEEE 1394, and much cheaper, too. TTE technology already enjoys 
inexpensive, commercially available hardware and software suitable for prototyping, hosting, and 
testing. Backwards compatibility with standard Ethernet hardware and software tools would also 
facilitate and reduce the cost of test equipment, drivers, IP cores, programming and debugging 
environments, and demonstration systems. TTE would, therefore, make a nice addition to the URTM 
protocol suite.  A full report on this protocol has been delivered to NASA LaRC under separate cover. 
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5 Appendix A:  1394 PIM Routing Report 
Pim 1394
Ruoted report

NET Ruoted Length (mils) dealy(ns) Net Class Port#
TPA2_N 653.69 0.093 TP_BUS 2
TPA2_P 584.75 0.083 TP_BUS 2
TPB2_N 886.95 0.126 TP_BUS 2
TPB2_P 882 0.125 TP_BUS 2
TPA1_N 750.63 0.107 TP_BUS 1
1394_RX1_N 314.96 0.045 1394_CON 1
TPA1_P 775 0.110 TP_BUS 1
1394_RX1_P 286.94 0.041 1394_CON 1
TPB1_N 495.06 0.070 TP_BUS 1
1394_TX1_N 647.78 0.092 1394_CON 1
TPB1_P 523.91 0.074 TP_BUS 1
1394_TX1_P 619.72 0.088 1394_CON 1
TPA0_N 808.44 0.115 TP_BUS 0
1394_RX0_N 329.98 0.047 1394_CON 0
TPA0_P 837.79 0.119 TP_BUS 0
1394_RX0_P 302.64 0.043 1394_CON 0
TPB0_N 487.13 0.069 TP_BUS 0
1394_TX0_N 683.12 0.097 1394_CON 0
TPB0_P 516.89 0.073 TP_BUS 0
1394_TX0_P 654.95 0.093 1394_CON 0
TPBIAS0 475.83 0.068 TP_BIAS
TPBIAS1 467.89 0.066 TP_BIAS
TPBIAS2 289.93 0.041 TP_BIAS
TPA2_RTN 322.99 0.046 TP_BIAS
TPB0_T 176.21 0.025 TP_BIAS
TPB1_T 245.36 0.035 TP_BIAS
TPB2_T 192.06 0.027 TP_BIAS
+3_3V 2301.39 0.327 POWER
+1_95VP 411.96 0.058 POWER
+3_3VA 581.75 0.083 POWER
+1_95V 2221.55 0.315 POWER
+3_3VP 251.89 0.036 POWER
VCC_OSC 597.26 0.085 POWER
BUS_PWR 184.81 0.026 POWER
PIM_KEY0 248.28 0.035 PIM_KEY
PIM_KEY1 128.62 0.018 PIM_KEY
PIM_KEY2 175.05 0.025 PIM_KEY
PIM_KEY3 235.42 0.033 PIM_KEY
DGND 1936.28 0.275 GND
SHELL 170.95 0.024 GND
CGND 866.74 0.123 GND
PHY_DATA2 288.26 0.041 DATA_BUS_FPGA
PHY_DATA7 390.96 0.055 DATA_BUS_FPGA
PHY_DATA1 353.01 0.050 DATA_BUS_FPGA
PHY_DATA0 270.36 0.038 DATA_BUS_FPGA
PHY_DATA3 299.85 0.043 DATA_BUS_FPGA
PHY_DATA4 382.25 0.054 DATA_BUS_FPGA
PHY_DATA5 428.93 0.061 DATA_BUS_FPGA
PHY_DATA6 360.13 0.051 DATA_BUS_FPGA
PHY_RESET 528.07 0.075 CTRL_FPGA
PHY_PCLK 220.11 0.031 CTRL_FPGA
PHY_LPS 521.81 0.074 CTRL_FPGA
PHY_LINKON 113.81 0.016 CTRL_FPGA
PCLK 95.02 0.013 CTRL_FPGA
LKON 151.93 0.022 CTRL_FPGA
LCLK 204.75 0.029 CTRL_FPGA
1394_BMODE 345.99 0.049 CTRL_FPGA
PHY_CTL0 255.6 0.036 CTRL_FPGA
PHY_CTL1 337.98 0.048 CTRL_FPGA
PHY_LCLK 125.71 0.018 CTRL_FPGA
PHY_LREQ 333.11 0.047 CTRL_FPGA
PHY_PINT 400.6 0.057 CTRL_FPGA
CLK_98MHZ_18 127.45 0.018 CLK_98MHZ
OSC_98MHZ 297.98 0.042 CLK_98MHZ
PC2 461.53 0.065 1394_CONFIG
PC1 457.52 0.065 1394_CONFIG
PC0 457.99 0.065 1394_CONFIG
DS1 412.53 0.059 1394_CONFIG
DS0 493.09 0.070 1394_CONFIG
R0 176.12 0.025 1394_CONFIG
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Diff Pair Mistmatch(mils) Diff Pair Mistmatch(ns) RX to TX mismatch (mils) RX to TX mismatch (ns)
68.94 0.010 63.99 0.009

4.95 0.001

3.65 0.001 4.44 0.001

-0.79 0.000

-2.01 0.000 -0.42 0.000

-1.59 0.000
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6 Appendix B:  SpaceWire PIM Routing Report 
Pim Space Wire
Ruoted report

NET Ruoted Length (mils) Net Class Match Lengh Group
R_RXS- 514.41 100_OHM_DIFF MLNetGroup2
R_RXD- 514.41 100_OHM_DIFF MLNetGroup2
R_RXD+ 514.41 100_OHM_DIFF MLNetGroup2
R_RXS+ 514.41 100_OHM_DIFF MLNetGroup2
P_RXD+ 514.41 100_OHM_DIFF MLNetGroup2
P_RXD- 514.41 100_OHM_DIFF MLNetGroup2
P_RXS+ 514.41 100_OHM_DIFF MLNetGroup2
P_RXS- 514.41 100_OHM_DIFF MLNetGroup2
P_TXD+ 514.41 100_OHM_DIFF MLNetGroup2
P_TXD- 514.41 100_OHM_DIFF MLNetGroup2
P_TXS+ 514.41 100_OHM_DIFF MLNetGroup2
P_TXS- 514.41 100_OHM_DIFF MLNetGroup2
R_TXD+ 514.41 100_OHM_DIFF MLNetGroup2
R_TXD- 514.41 100_OHM_DIFF MLNetGroup2
R_TXS+ 514.41 100_OHM_DIFF MLNetGroup2
R_TXS- 514.41 100_OHM_DIFF MLNetGroup2
PSTROBE_TX 1383.91 DATA_FPGA MLNetGroup1
PDATA_RX 1383.91 DATA_FPGA MLNetGroup1
PDATA_TX 1383.91 DATA_FPGA MLNetGroup1
PSTROBE_RX 1383.91 DATA_FPGA MLNetGroup1
RDATA_RX 1383.91 DATA_FPGA MLNetGroup1
RDATA_TX 1383.91 DATA_FPGA MLNetGroup1
RSTROBE_RX 1383.91 DATA_FPGA MLNetGroup1
RSTROBE_TX 1383.91 DATA_FPGA MLNetGroup1
+3_3V 4475.18 POWER
DGND 0
PIM_KEY0 116.02
PIM_KEY1 126.38
PIM_KEY2 113.95
PIM_KEY3 124.31
PTXOE 1076 DATA_FPGA
RTXOE 1400.35 DATA_FPGA  



 

28 

7 Appendix C: 1553 PIM Routing Report 
PIM1553      

Routted report 
No Matched Length signals required for 
1553  

      

NET   
Routed Length 
(mils) Net Class 

Match Lengh 
Group 

TXRX_B_N  1715.26 0 0
TXRX_B   1509.24 0 0
TXRX_A_N  1806.08 0 0
TXRX_A   1743.44 0 0
S_BUSB_P  347.12 0 0
S_BUSB_N  232.86 0 0
S_BUSA_P  235.86 0 0
S_BUSA_N  344.26 0 0
S8B   170.36 0 0
S8A   167.36 0 0
S7B   170.36 0 0
S7A   172.77 0 0
S5B   171.36 0 0
S5A   169.01 0 0
S4B   171.18 0 0
S4A   167.36 0 0
PIM_KEY3  147.09 0 0
PIM_KEY2  136.73 0 0
PIM_KEY1  126.38 0 0
PIM_KEY0  116.02 0 0
DGND   359.57 0 0
1553_TX_INH_B  964.54 0 0
1553_TX_INH_A  1163.39 0 0
1553_TX_B_N  1026.89 0 0
1553_TX_B  1163.58 0 0
1553_TX_A_N  1360.47 0 0
1553_TX_A  1184.95 0 0
1553_PLUS_B  2488.09 0 0
1553_PLUS_A  2139.28 0 0
1553_MINUS_B  2188.71 0 0
1553_MINUS_A  2017.45 0 0
1553_BUSB_P  193.21 0 0
1553_BUSB_N  347.28 0 0
1553_BUSA_P  193.21 0 0
1553_BUSA_N  342.83 0 0
+3_3V   4267.23 0 0
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8 Appendix D:  PIM Pinout Table 

Conn
Position Pin #

1553 PIM
RC442-052-321-4100

SpW PIM
RC442-052-321-4100

1394 PIM
RC442-052-321-4100

RPTM
RC422-052-101-3000

RPTM
Input/Output

Outer 1 +3.3V +3.3V +3.3V +3.3V Power
Outer 2 SPW_RSTROBE_TX SPW_RSTROBE_TX Output
Outer 3 SPW_RTXOE SPW_RTXOE Output
Outer 4 NCGND SPW_RDATA_RX NCGND SPW_RDATA_RX Input
Outer 5 SPW_RDATA_TX SPW_RDATA_TX Output
Outer 6 PIM_KEY3 PIM_KEY3 PIM_KEY3 PIM_KEY3 Input
Outer 7 PIM_KEY2 PIM_KEY2 PIM_KEY2 PIM_KEY2 Input
Outer 8 PIM_KEY1 PIM_KEY1 PIM_KEY1 PIM_KEY1 Input
Outer 9 PIM_KEY0 PIM_KEY0 PIM_KEY0 PIM_KEY0 Input
Outer 10 1553_MINUS_B NCGND NCGND 1553_MINUS_B Input
Outer 11 1553_TX_A_N 1553_TX_A_N Output
Outer 12 1553_PLUS_A NCGND NCGND 1553_PLUS_A Input
Outer 13 GND GND GND GND GND
Inner 14 SPW_PTXOE SPW_PTXOE Output
Inner 15 GND GND GND GND GND
Inner 16 NCGND SPW_RSTROBE_RX NCGND SPW_RSTROBE_RX Input
Inner 17 GND GND GND GND GND
Inner 18 GND GND GND GND GND
Inner 19 1553_TX_B 1553_TX_B Output
Inner 20 1553_TX_B_N 1553_TX_B_N Output
Inner 21 1553_TX_INH_B 1553_TX_INH_B Output
Inner 22 1553_PLUS_B NCGND NCGND 1553_PLUS_B Input
Inner 23 1553_TX_A 1553_TX_A Output
Inner 24 1553_TX_INH_A 1553_TX_INH_A Output
Inner 25 1553_MINUS_A NCGND NCGND 1553_MINUS_A Input
Inner 26 +1.95V +1.95V Power
Inner 27 +3.3V +3.3V +3.3V +3.3V Power
Inner 28 NCGND SPW_PDATA_RX NCGND SPW_PDATA_RX Input
Inner 29 NCGND SPW_PSTROBE_RX NCGND SPW_PSTROBE_RX Input
Inner 30 1394_PHY_LPS 1394_PHY_LPS Output
Inner 31 NCGND NCGND 1394_PHY_PINT 1394_PHY_PINT Input
Inner 32 1394_PHY_LREQ 1394_PHY_LREQ Output
Inner 33 NCGND NCGND 1394_PHY_PCLK 1394_PHY_PCLK Input
Inner 34 1394_PHY_CTL1 1394_PHY_CTL1 BiDir
Inner 35 1394_PHY_DATA1 1394_PHY_DATA1 BiDir
Inner 36 GND GND GND GND GND
Inner 37 1394_PHY_DATA4 1394_PHY_DATA4 BiDir
Inner 38 1394_PHY_DATA5 1394_PHY_DATA5 BiDir
Inner 39 GND GND GND GND GND
Outer 40 GND GND GND GND GND
Outer 41 SPW_PDATA_TX SPW_PDATA_TX Output
Outer 42 SPW_PSTROBE_TX SPW_PSTROBE_TX Output
Outer 43 1394_PHY_RESET 1394_PHY_RESET Output
Outer 44 NCGND NCGND 1394_PHY_LINKON 1394_PHY_LINKON Input
Outer 45 1394_PHY_LCLK 1394_PHY_LCLK Output
Outer 46 1394_PHY_CTL0 1394_PHY_CTL0 BiDir
Outer 47 1394_PHY_DATA0 1394_PHY_DATA0 BiDir
Outer 48 1394_PHY_DATA2 1394_PHY_DATA2 BiDir
Outer 49 1394_PHY_DATA3 1394_PHY_DATA3 BiDir
Outer 50 GND GND GND GND GND
Outer 51 1394_PHY_DATA6 1394_PHY_DATA6 BiDir
Outer 52 NCGND NCGND 1394_PHY_DATA7 1394_PHY_DATA7 BiDir

URTM:  RPTM / PIM Interface Connector Mapping:  52 Pins
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