Environmental Control and Life Support System (ECLSS)

System Engineering Workshop

Life Sciences Department

ISU SSP 2009

Ames Research Center, USA
Agenda

• Recap SSP09 Lecture on ECLSS
 ✓ ECLS Subsystems
 ✓ Non Regenerative (Backpacking) vs. Regenerative
 • Open loop vs. Closed Loop
 • Physical-chemical vs. Bioregenerative
 ✓ Equivalent System Mass (ESM)
 • Applications for ECLS subsystem design

• US Spacecraft ECLS Subsystem component description
 ✓ Mercury, Gemini, Apollo, Skylab, Shuttle, ISS, CEV, LL, LO
 • Detail Air Revitalization, Pressure Control, and Water

• Team Projects
 ✓ Split into 4 teams ➔ Shop at “ECLS-mart” ➔ Determine ESM
 • 2 teams with Mission Scenario #1
 • 2 teams with Mission Scenario #2
 ✓ Out brief ESM to Department and discuss variations
The Human “Box”

• Mass/Energy Balance around a Human Being

<table>
<thead>
<tr>
<th></th>
<th>REGULATION (Metric)</th>
<th>REGULATION (English)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp & Humidity</td>
<td>Temp & Humidity</td>
</tr>
<tr>
<td></td>
<td>~18°C - ~ 27°C</td>
<td>~64°F - ~ 81°C</td>
</tr>
<tr>
<td></td>
<td>~25 % - ~75% H2O</td>
<td>~25 % - ~75% H2O</td>
</tr>
<tr>
<td>Atmospheric Composition</td>
<td>51711Pa < P tot ≤ 103421Pa</td>
<td>7.5psia < P tot ≤ 15.0psia</td>
</tr>
<tr>
<td></td>
<td>128mm Hg < ppO2 ≤ 178mm Hg</td>
<td>2.48psia < ppO2 ≤ 3.44psia</td>
</tr>
<tr>
<td></td>
<td>≤ 5mm Hg ppCO2</td>
<td>≤ 0.096 Hg ppCO2</td>
</tr>
</tbody>
</table>
Recap on ECLSS (1/4)

You already learned...

- **Why we need ECLSS?** → To SUSTAIN human life and workability
- **Main Subsystems (Functions) of ECLSS**
 - Atmosphere Revitalization and/or Pressure Control Subsystem (ARS, ACS, or PCS)
 - CO₂ and trace gas removal
 - Pressure control (gas storage, relief valves, introduction valves, pressure gages)
 - Atmospheric constituents monitoring (O₂, N₂, H₂O, CO₂, trace gasses)
 - Forced convection air flow
 - Potable Water Recovery and Management Subsystem (PWS or WRM)
 - Potable water processing and/or storage
 - Alternate water processing and/or storage
 - Water quality monitoring (TOC, pH, Microbiology)
 - Temperature and Humidity Control (THC)
 - Depending on vehicle, may be performed with ARS + Active Thermal Control Subsystem
 - Atmospheric control of temperature and humidity with heat exchanger and forced convection
 - Passive equipment cooling (via cabin airflow)
 - Waste Management and/or Collection Subsystem (WMS or WCS)
 - Human waste management – solid, liquid, and gas separation
 - Fire Detection and Emergency Management Subsystem (FDS)
 - Smoke detectors, fire extinguishers, portable breathing masks
 - Strategy for cabin fire, chemical release, and/or depressurizing cabin
Recap on ECLSS (2/4)

You already learned...(continued)

- **Non Regenerative / Open Loop**
 - Backpacking mission (high consumables / resupply usage)
 - Simple, reliable
 - Resources are linearly dependent on flight time

- **Regenerative / Closed Loop**
 - Recycling of resources (low consumables / resupply usage)
 - Minimized overboard losses
 - Increased power, thermal, and initial mass requirements
 - Lower reliability, based on higher complexity
 - Trade off for closed loop occurs for missions of ~3 months in duration
 - Varies dependent on number of crew, spacecraft volume, in situ resources, etc.

- **“Physical – chemical – mechanical”**
 - Uses physical, chemical, and mechanical devices for ECLS processing

- **Bioregenerative**
 - Uses living organisms to produce or break down organic molecules for ECLS processing
 - “Put the Earth in a little box” so we can go somewhere else
You already learned…(continued)

- One of many analysis tools used to trade spacecraft system optimization is...
- **Equivalent System Mass (ESM)**
 - Evaluates trade study options for spacecraft life support systems
 - Identifies which option meets all the requirements while providing the lowest launch cost
 - Mass
 - Volume
 - Power
 - Cooling
 - Crew Time
 - Provides a ‘total system impact’ for comparison in overall vehicle life support system selection
Recap on ECLSS (4/4)

☐ You already learned...(continued)

- \[ESM = M + (V \cdot V_{eq}) + (P \cdot P_{eq}) + (C \cdot C_{eq}) + (CT \cdot D \cdot CTeq) \]

where \(ESM \) = the equivalent system mass value of the system of interest [kg],

- \(M \) = the total mass of the system [kg],
- \(V \) = the total pressurized volume of system [m³],
- \(V_{eq} \) = the mass equivalency factor for the pressurized volume infrastructure [kg/m³],
- \(P \) = the total power requirement of the system [kW],
- \(P_{eq} \) = the mass equivalency factor for the power generation infrastructure [kg/kW],
- \(C \) = the total cooling requirement of the system [kW],
- \(C_{eq} \) = the mass equivalency factor for the cooling infrastructure [kg/kW],
- \(CT \) = the total crewtime requirement of the system [CM-h/y],
- \(D \) = the duration of the mission segment of interest [y],
- \(CTeq \) = the mass equivalency factor for the crewtime support [kg/CM-h]
US Spacecraft ECLSS – Mercury (1960-1963)

- First flight – May 5th, 1961, Alan Shepard, 15 min sub-orbital flight
- Six total manned flights with 1 crewmember
 - Longest was 34 hours, 19 minutes, 49 seconds
- Crewmembers wore suit for duration of flight
 - Suit revitalized atmosphere, controlled temperature & relative humidity
- Spacesuit normally unpressurized during flight
 - If necessary, crewmember could pressurize suit by closing visor
- Pressurized Volume = 1.56m³

<table>
<thead>
<tr>
<th>Subsystem Feature</th>
<th>Air Revitalization (CO2 Removal)</th>
<th>Pressure Control</th>
<th>Potable Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>CO2 chemically removed with consumable</td>
<td>Stored O2 Atmosphere: 100% O2 @ 34.5kPa (5psia)</td>
<td>Stored H2O Disinfection by residual chlorine</td>
</tr>
<tr>
<td>Hardware (kg)</td>
<td>Lithium Hydroxide (LiOH) parallel (redundant) path</td>
<td>O2 in 2 x 1.8kg Ni plated tanks at 51.7MPa (7500psia)</td>
<td>6lb Bladder tank back pressurized via squeeze bulb</td>
</tr>
</tbody>
</table>

- Two unmanned flights + Ten manned flights
 - Manned flights were ~5 hours to ~14 days
 - Two crewmembers on each flight
 - Crewmembers again wore suits for the duration of the flight
 - Air revitalization, temperature, and humidity controlled separately in suit and in cabin
 - Improvements to life support system vs. Mercury
 - Supercritical O₂ storage vs. high pressure
 - Integrated heat exchanger + water separator
 - Modularity in components for easier in-flight maintenance

- Pressurized Volume = 2.26m³

<table>
<thead>
<tr>
<th>Subsystem Feature</th>
<th>Air Revitalization (CO₂ Removal)</th>
<th>Pressure Control</th>
<th>Potable Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>CO₂ chemically removed with consumable</td>
<td>Stored O₂ Atmosphere: 100% O₂ @ 34.5kPa (5psia)</td>
<td>Stored H₂O Cl biocide added prelaunch</td>
</tr>
<tr>
<td>Hardware (kg)</td>
<td>Lithium Hydroxide (LiOH) parallel (redundant) path</td>
<td>Supercritical cryogenic O₂ in 1 spherical tank at 5.86MPa (850psia)</td>
<td>Bladder tank back pressurized with O₂</td>
</tr>
</tbody>
</table>
Eleven crewed missions

- Two Earth orbiting & two Lunar orbiting
- One Lunar “swing by”
- Six Lunar landings

Apollo missions split into two sections

- **Command and Service Module (CSM)**
 - Transported crew of 3 from Low Earth Orbit (LEO) to Low Lunar Orbit (LLO) and back to Earth
 - SM unpressurized with water, gas, electrical, etc.
 - Similar to CEV Crew Module (CM) & Service Module (SM)

- **Lunar Excursion Module (LEM) or Lunar Module (LM)**
 - Ferried two crewmembers to the lunar surface and back to CSM

- Both contained separate life support systems
US Spacecraft ECLSS – Apollo (CSM)

- **CSM Life Support**
 - Capable of providing life support for 3 crewmembers for 14 days
 - Fuel cells provided energy + drinking water
 - Oxygen tanks in SM fed CM for crew consumption as well as fuel cells

- **Pressurized volume = 5.9m³**

<table>
<thead>
<tr>
<th>Subsystem Feature</th>
<th>Air Revitalization (CO2 Removal)</th>
<th>Pressure Control</th>
<th>Potable Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>CO₂ chemically removed with consumable</td>
<td>Stored O2 Atmosphere: 100% O₂ @ 34.5kPa (5psia)</td>
<td>Fuel cell provided + Cl biocide added daily</td>
</tr>
<tr>
<td>Hardware (kg)</td>
<td>Lithium Hydroxide (LiOH) parallel (redundant) path</td>
<td>Supercritical cryogenic O₂ in 2 x 145kg spherical Inconel Dewar tanks at 6.20MPa (900psia)</td>
<td>Al alloy tank with polyisoprene bladder, back pressurized w/ O₂</td>
</tr>
</tbody>
</table>
US Spacecraft ECLSS – Apollo (LEM)

- Allowed 12 astronauts to walk on the surface of the moon
 - 2 crewmembers
 - Pressurized volume = 4.5m³

<table>
<thead>
<tr>
<th>Subsystem Feature</th>
<th>Air Revitalization (CO₂ Removal)</th>
<th>Pressure Control</th>
<th>Potable Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>CO₂ chemically removed with consumable</td>
<td>Stored O₂ Atmosphere: 100% O₂ @ 34.5kPa (5psia)</td>
<td>Stored H₂O with iodine biocide (Cl corrosion concerns) added via “MCV”</td>
</tr>
<tr>
<td>Hardware (kg)</td>
<td>Lithium Hydroxide (LiOH) parallel (redundant) path</td>
<td>Descent: compressed O₂ at 18.6MPa (2700psia) Ascent: Supercritical cryogenic O₂ in Inconel bottles at 5.86MPa (850psia)</td>
<td>3 tanks (1 descent, 2 ascent) silicone rubber bladder</td>
</tr>
</tbody>
</table>

- First U.S. Space Station (pressurized volume = 361m³)
 - Study effects of long-duration space flight on humans
 - Three Skylab missions of 28, 59, and 84 days
 - 3 crewmembers on each mission

- Skylab life support (updates)
 - Added a 2 canister molecular sieve vs. LiOH
 - Method for monitoring water biocide (iodine) in-flight
 - UV smoke detectors

<table>
<thead>
<tr>
<th>Subsystem Feature</th>
<th>Air Revitalization (CO₂ Removal)</th>
<th>Pressure Control</th>
<th>Potable Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Partially closed loop (some overboard loss) CO₂ chemically removed via regenerative source</td>
<td>Stored O₂/N₂ Atmosphere: Mixed 72%O₂ / 28%N₂ @ 5psia (34.5kPa)</td>
<td>Stored H₂O (iodine biocide, added in-flight, but removed prior to drinking)</td>
</tr>
<tr>
<td>Hardware (kg)</td>
<td>2 canister molecular sieve, regenerative Zeolite combination adsorbs CO₂ + H₂O & desorbs when exposed to vacuum</td>
<td>O₂/N₂ stored in gaseous form @ 3000psia (20.7MPa) in bottles</td>
<td>10 stainless steel metal bellows tanks back pressurized with N₂</td>
</tr>
</tbody>
</table>

- 4 – 7 crewmembers per mission
- Varying mission durations of ~14 days
 - Early missions were ~4 days, and missions have been as long at 18 days.
- Always Low Earth Orbit Operations
- Pressurized Volume = 132m³

<table>
<thead>
<tr>
<th>Subsystem Feature</th>
<th>Air Revitalization (CO₂ Removal)</th>
<th>Pressure Control</th>
<th>Potable Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>CO₂ chemically removed with consumable</td>
<td>Stored O₂/N₂ Atmosphere: Mixed 21.7%O₂ / 78.3%N₂ @ 14.7psia (101kPa)</td>
<td>Stored H₂O (iodine biocide, added pre-flight, and during with MCV, but removed prior to drinking)</td>
</tr>
<tr>
<td>Hardware (kg)</td>
<td>Lithium Hydroxide (LiOH) parallel (redundant) path</td>
<td>O₂/N₂ stored in gaseous form @ 3300psia (22.8MPa) in bottles. 4N₂ tanks, O₂ cryogenic storage.</td>
<td>4 stainless steel metal bellows tanks back pressurized with N₂</td>
</tr>
</tbody>
</table>

- Crewed since Oct 31st, 2000
- Currently provide life support for 6 person crew
- US Operating Segment designated “National Laboratory”
- 6 month expeditions (current human limit requirement)
- Pressurized Volume = 711m3 (as of July 2009)

<table>
<thead>
<tr>
<th>Subsystem Feature</th>
<th>Air Revitalization (CO2 Removal)</th>
<th>Pressure Control</th>
<th>Potable Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Partially closed loop (some overboard loss) CO2 chemically removed</td>
<td>Atmosphere: Mixed 21.7%O2 / 78.3%N2 @ 14.7psia (101kPa)</td>
<td>Stored water (iodine or AgF biocide) or processed via WPA/UPA</td>
</tr>
<tr>
<td>Hardware (kg)</td>
<td>4 bed molecular sieve with 2 regenerative Zeolite beds to remove CO2, desorbed with heat and pressure</td>
<td>Oxygen @ max 3000psia for EVAs or generated with Oxygen Generation Assembly (electrolysis)</td>
<td>Stored in WPA tanks fed to the US water bus or stored in collapsible containers (CWCs/PWRs)</td>
</tr>
</tbody>
</table>

- **Initial Operational Capability, ~2015**
- **Similar split to Apollo**
 - CM = Crew Module (pressurized volume 15.6m3 [~550cu ft])
 - SM = Service Module (unpressurized, storage volume)
- **ISS mission**
 - Expected 4 person crew to ISS with 6 months quiescent operations + ~6 days maximum active crew time
- **Lunar mission ~2020**
 - ~21 days maximum active crew time + ~6 months quiescent operations during lunar habitation

<table>
<thead>
<tr>
<th>Subsystem Feature</th>
<th>Air Revitalization (CO2 Removal)</th>
<th>Pressure Control</th>
<th>Potable Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Partially closed loop (some overboard loss) CO2 chemically removed</td>
<td>Mixed O2/N2 @ 14.7psia – ISS, ~10.2psia – lunar</td>
<td>Stored water (baselined AgF biocide)</td>
</tr>
<tr>
<td>Hardware (kg)</td>
<td>Regenerative pressure swing assembly w/ solid amine adsorbs CO2 + H2O & desorbs when exposed to vacuum</td>
<td>O2/N2 stored @ ~5000psia in Composite Overwrap Pressure Vessels</td>
<td>~5 Inconel bellows tanks in service module</td>
</tr>
</tbody>
</table>
US Spacecraft ECLSS Altair/Lunar Lander (~2020)

- Initial Operational Capability, ~2020
- Lunar sortie (~8 days on the Moon)
 - Expected 4 person crew on CEV to the Moon, with ~8 days active operations in Altair/Lunar Lander
 - No support from pre-positioned surface assets, primarily suited operations
- Lunar habitation (~6 months on the Moon)
 - 4 person crew on CEV to the Moon, with ~6 months active operations on the moon (mixed between Lunar Lander and Lunar Outpost)

<table>
<thead>
<tr>
<th>Subsystem Feature</th>
<th>Air Revitalization (CO2 Removal)</th>
<th>Pressure Control</th>
<th>Potable Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>CO2 chemically removed with consumable</td>
<td>Stored O2/N2 Atmosphere: Mixed O2/N2 @ ~10.2psia</td>
<td>Stored water</td>
</tr>
<tr>
<td>Hardware (kg)</td>
<td>Lithium Hydroxide (LiOH) parallel (redundant) path</td>
<td>N2/O2 stored in descent stage Only O2 stored in ascent stage</td>
<td>Expected in suit drink bag</td>
</tr>
</tbody>
</table>
US Spacecraft ECLSS Lunar Outpost (TBD)

- Initial Operational Capability, TBD
- Lunar habitation (~6 months on the Moon)
 - 4 person crew on CEV to the Moon, with ~6 months active operations on the moon (mixed between Lunar Lander and Lunar Outpost)
 - Expected to include power, habitats, surface mobility (LER), and resource utilization
- Opportunity for closed loop, bioregenerative life support
 - Will most likely stage the approach
 - Initial capability/construction (similar to Altair life support)
 - Interim capability/construction physical/chemical life support (similar to ISS but relying on 1/6 g)
 - Final capability/sustaining bioregenerative mixed with physical/chemical
Team Projects

- **Split into teams of 4 (count off)**
 - 2 teams = Mission Scenario #1
 - 6 crewmembers, 30 days, 0 g, pressurized volume
 - V_{eq} =
 - P_{eq} =
 - C_{eq} =
 - C_{Teq} =
 - 2 teams = Mission Scenario #2
 - 4 crewmembers, 180 days, Lunar Gravity (1/6 g), pressurized volume
 - V_{eq} =
 - P_{eq} =
 - C_{eq} =
 - C_{Teq} =
 - No Discussion between teams with the same scenarios

- **Assumptions**
 - All infrastructure is the same (not included in ESM calculation)
 - Ducts, pipes, crew interfaces, power interface, etc.
References (1/2)

- Constellation Program (CxP) document 70024 Rev C, “Human-Systems Integration Requirements”
- ISU SSP 2008 Presentation by Dr. Douglas Hamilton, “Environmental Control and Life Support”
References (2/2)

- ISU SSP 2008 Presentation by Dr. N. Tolyarenko, “Environmental Control and Life Support System”
- ISU SSP 2009 Presentation by Dr. Angie Buckley and Dr. Gilles Clement, “Life Support Systems during Space Missions”