NASA/CR-2011-217149

Error Propagation Analysis in the SAE
Architecture Analysis and Design Language
(AADL) and the EDICT Tool Framework

Brian W. LaValley, Phillip D. Little, and Chris J. Walter
WW Technology Group, Ellicott City, Maryland

May 2011

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

e CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA STI
program, see the following:

e Access the NASA STI program home page at
http.://www.sti.nasa.gov

e E-mail your question via the Internet to
help@sti.nasa.gov

e Fax your question to the NASA STI Help Desk
at 443-757-5803

e Phone the NASA STI Help Desk at
443-757-5802

e Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA/CR-2011-217149

Error Propagation Analysis in the SAE
Architecture Analysis and Design Language
(AADL) and the EDICT Tool Framework

Brian W. LaValley, Phillip D. Little, and Chris J. Walter
WW Technology Group, Ellicott City, Maryland

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NNL10AB32T

May 2011

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
443-757-5802

Table of Contents

1.

A

Error Modeling and Analysis with AADL and EDICTcoociiiiiiiiiiiee e 1
1.1, Architecture FrameWOTKccooiiiiiiiiiiiiei ettt e 1
1.2, Importing AADL MOGEIS.......oocieriiiiiiieeit ettt ettt st e b e sbaesaaestaesssessseenseenseenens 3
1.3, EDICT E1TOr MOAEINE ...c..eeitiiiiiieiiieieeee sttt ettt et ettt es 4

0 BN o o) (o Y o] s BRSSPSR 4

1.3.2. Error CharacteristicS MOAEINEGcevuiiiiiiiiiii et 5

1.3.3. Error Mitigation MOAEIING.......ccveviiiiiiiieiiesie ittt ettt sae e esbeesaaessaeesne e 9

1.3.4. Error Modeling with INfIUENCESc.ooiiiiiiiiiiieiee e 14

1.3.5. Error Model Management.............ccveruieriiiiiiiieiiesiiesieeieesteesieesinessveesseeseesssesssesssesssessses 16
1.4. EDICT Error Propagation ANALYSISceceeteriiriinierieienieeteteeie ettt 18

| BN o o) (o o] BT RTSUROURS 18

1.4.2. Error Propagation ANALYZETccveviiiiiiiieiieeieesiee et ereesteeseae e esseeveesasesssessseesseessens 18

Analysis of the SPIDER ATCRItECTUIE.....c..couiiiiiiiiiiiiiiieie ettt 22

Layered Error MOAEIING.ooviiiiiiieiieciieeie ettt ettt seveeebeebeebaestaesabeesaeesseesseessaesssessseens 25

CONCIUSIONS ...ttt ettt ettt ettt ettt et e e bt e stteeateeabeeabeens e e s eesneesnseenseanseenseenseenseesseesseesnneans 28

RETEICIICES ...ttt ettt ettt ettt e bt b e s bt e s et eat e et e e bt e sbeesbeesareeas 29

1. Error Modeling and Analysis with AADL and EDICT

This report documents the capabilities of the EDICT tools for error modeling and error propagation
analysis when operating with models defined in the Architecture Analysis & Design Language (AADL).
We also discuss our experience using the EDICT error analysis capabilities on a model of the Scalable
Processor-Independent Design for Enhanced Reliability (SPIDER) architecture that used the Reliable
Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about model based
design techniques for error modeling and analysis of highly reliable computing architectures.

1.1. Architecture Framework

Conducting dependability analysis requires the ability to evaluate various design alternatives to determine
which system design alternative best meets all dependability requirements. There needs to be a
framework in place that defines the levels of

. Architecture)
abstraction and how the levels relate to one Specification Level Structural Behavioral
another in order to construct a set of design 3 _
alternatives that can be evaluated against a 3 Meta- -

) o g § Architecture [—1
common set of design criteria. The EDICT tools é ==
contain an architecture framework that 8
establishes the levels of abstraction and the
relations between the levels. The EDICT Conceptual

) Architecture
architecture framework defines five levels of "—-|/>
abstraction: _I\I/_,
e Meta-Architecture Logical
. . . Architecture

Identifies the governing architectural

style, principles, templates and other ‘@

reusable constructs. |:| I:|

System
e Conceptual Architecture Architecture

Identifies appropriate decomposition and

serves as a useful vehicle for non-

technical communication of structure. 3 jAA

; +
. . Component .
e Logical Architecture g Architecture
£

Identifies detailed blueprint of functional {®

areas to be developed and a detailed

specification of interfaces and interactions. Figure 1: EDICT Architecture

e System Architecture Framework
Identifies how functional areas will be realized in software (processes, threads, etc.) and the
hardware platform (processors, networks, etc.) that will host the software.

1

e Component Architecture
Identifies the detailed structural design of specific software components

The levels of abstraction that are most relevant to this project are the Logical and System architecture
levels, as these levels are where the dependability analysis in the EDICT Error Handling content occurs.
The error modeling and analysis described in this report resides at the System Architecture layer.

The EDICT tools support an implementation of this framework and a supporting set of management tools
to enable users to establish related sets of architecture models across the abstraction, to maintain inter-
model references, and to define design options within those model sets. EDICT uses a pair of concepts to
organize the models in an architecture framework and define the set of models that represent a design
option.

The Design Effort establishes the scope/visibility of models, analyzers and generated artifacts that are
contributing to the development or maintenance of a particular system. A Design Effort is composed of
one or more design options and may contain models and analyzers that can contribute to multiple design
options. Figure 2: EDICT Design Effort and Options Tree graphically depicts a Design Effort as a set of
architecture models within the architecture framework. The models are represented by circles and the
abstraction level relations indicate how the lower level models were derived from models higher in the

framework.
@ Meta

Architecture Level

Architecture Level

Architecture Level

System
Architecture Level

S3

Figure 2: EDICT Design Effort and Options Tree

A Design Option defines one design that strives to meet the requirements of the system that is being
developed. The design option is composed of a set of models, analyzers and artifacts that are related
within the Design Effort. In Figure 2 one Design Option is highlighted in green. Design Options may be

used in a number of different ways; such as modeling and comparing competing designs or modeling and
comparing design revisions.

1.2. Importing AADL Models

An AADL model may be a provider of system architecture information for EDICT. An AADL-specific
adapter translates component and interface information from AADL to EDICT’s internal representation.
The resulting system architecture model is managed by EDICT’s Architecture Model Services (AMS),
which make the model available to the error handling content of System Composer and System Analyzer,
as well as other tool clients. Architecture model generation configurations tell the AMS which EDICT
architecture model is generated from which adapted model. The AMS provides the extension point for
model change detection and notifications and management of the architecture model generation
configurations. Figure 3 conceptually illustrates the relationship between an AADL model, the AMS, and
EDICT tool clients.

In this project we have developed models of a 3x3 SPIDER architecture to use as an example in
evaluating the error modeling and analysis capabilities. The Architecture Model Services are used to
import the SPIDER model into EDICT for additional error modeling and propagation analysis.

Model
Technology

Standards-Based Modeling

n: hitecture
Model

Arch Thodel
Gen Configs
EDICT Tool Clients

Figure 3: Conceptual View of AADL Model Translation

EDICT

3

1.3. EDICT Error Modeling

1.3.1. Approach

The first step in error analysis of a system is to define the errors that may occur, the behavior of the
system components given those errors and the error handling or mitigation capabilities of the architecture.
EDICT defines the structure of this information for two aspects of error handling: errors that occur in
and/or flow through components in the system, and mechanisms that serve to detect and/or mitigate the
effects of errors when they occur. Specifically, six distinct models are used to augment the structural
architecture model with these error characteristics:

1. Error Semantic
This model defines the classification of an error that can occur as well as the specific
manifestation that the error takes. These semantic definitions are based on the error classes
defined in the Customizable Fault Effects Model [5].

2. Component Error Descriptors
This model defines the set of error semantics that may originate from a given type of component
in the system. Each error descriptor associates an error semantic with a model of occurrence (in
terms of the probability that the error will occur), and persistence (permanent, transient, etc.).

3. Component Error Model
This model defines the error characteristics of a specific component in the system architecture
model. This model has three primary elements, the first being the specification of a component in
the architecture model to which the model applies. This places the error model into a context and
allows deployment specific aspects to be incorporated into the error model definition. The
second element is the set of "exhibited" errors that describe errors that may originate from a
component. This consists of a Component Error Descriptors model (see above) augmented with a
set of deployment properties that may refine the way in which errors originating at the component
may propagate outward into the system. The final element is the error translation description,
which models how errors that arrive at a component’s input interfaces and influence relationships
undergo transformation (if any) and subsequent propagation.

4. Error Mitigator
This model defines a mechanism that is capable of detecting and/or tolerating errors (e.g., 3-way
voter, CRC checker, value range checker). The Error Mitigator model defines the set of error
semantics that the mitigator can detect and a separate set of semantics that can be tolerated.

5. Component Error Mitigation Model
This model defines for a given component all of the error mitigators that operate on a specified
set of error sources. These sources include input interfaces and influence relationships. The
Component Error Mitigation Model is where Error Mitigators are deployed to component
instances in the architecture model.

6. Influence Relationship Model
Influence relationships describe paths over which error propagations may occur as the result of
the component's context (as opposed to a component’s physically described interfaces). This
model defines influence relationships for an entire system architecture. It has two components: A
set of definitions of types of influences and the set of individual instances as they exist in the
system. The definition of an influence type includes a set of component types which may exert
such an influence and a set of component types which may be influenced. An influence
relationship of any defined type may be established between any pair of components that match
the specified source and destination component types.

These models have been implemented utilizing Eclipse Modeling Framework. The EMF facilities allow
for persistent storage of the models using XML based definitions and run-time representations that are
accessible though Java methods.

1.3.2. Error Characteristics Modeling

The EDICT tools supply a graphical editor for each of the error models described above. The graphical
editors provide a user interface that allows the user to easily manipulate the contents of the models and to
associate them with components of the architecture model that have been imported from AADL.

A screen capture of the Error Semantic Editor is depicted in Figure 4. Its content is simple, prompting the
user for the two key attributes of the error semantic model (class and manifestation), as well as providing
an unstructured area where the user can provide a more in-depth description of the error and how it should
be applied.

PEL-Thread BIU1 VS-AnyValue 52 =

Error Semantic: VS-AnyValue [Spider-SysComp/team/errorHandling,/err

Error 5emantic Class: ya|ye-Symmetric -
Manifestation:

AnyValue
Description:

A symmetric distribution of a value error that represents any valid value *

Figure 4: Error Semantic Editor

The EDICT tools provide a set of predefined error semantics that the user may employ directly. New
error semantics may be defined and added by the user to address specific needs of the architecture under
analysis. The combination of the default error semantics and the user defined error semantics constitutes

an error semantic /ibrary which is used as the basis for defining component error characteristics and error
mitigation mechanism characteristics.

The Component Error Descriptors (CED) editor provides methods for defining sets of error semantics that
can be assigned to architecture components. This editor is a multi-page editor, with the first page shown
in Figure 5. This page provides a summary of the error descriptors that are being bundled together into
the error descriptors set. From this page, new descriptors may be added to the set. When the "New
Descriptor” button is pressed, a new descriptor is created and added to the set. Following this, the editor
automatically navigates the user to the Error Descriptor page.

' — y
ced-PPCA04e &7 8
Component Error Descriptors
Mame: ced-PPCE04e
Description:

Ermrs that can criginate from a PowerPC 604e processor component. »
Error Descriptor Set:
Error Semantic Persistence Occurrence
Benign-Symrmetric, Fail Stop Permanent Simple Probakility: 1.0E-5
Value-Symrmetric, One, Two a.. Transient - Simple, 0.0050 Simple Probability: 2.0E-6
Tirning-Asymmetric, Slow Permanent Undefined

Mew Dﬂcriptﬂr] [Remove Dﬂcriptor]

Error Descriptor 5et] Error Descriptorl

Figure 5: Error Descriptor Set page of the Component Error Descriptors Editor

A screen capture of the Error Descriptor page is presented in Figure 6. This page provides the controls
that allow the user to select the error semantic for the descriptor, and then provide additional
characterization of the persistence and occurrence of the error.

The CED model that is created for a specific type of component may then be reused as often as is
appropriate to define the Component Error Models (discussed next). This supports the paradigm that
model information should be captured exactly once where possible. Thus, if it is determined that the error
characteristics of a given type of component require modification, this modification may be performed
once. The change is then automatically and immediately visible to all Component Error Models that use

6

the modified CED model as a basis for describing the error characteristics of components of the
associated type.

Error Descriptor

Selected Error Semantic: :
FPersistence: Permanent .

Value-Symmetric: link-corrupt

Benign-Symrmetric Permanent

Benign-Asymmetric This persistence has been characterized as
permanent. Mo additional configuration

Value-Symmetric : B 2
information is required

link-corrupt

header-corrupt

Any\Value

Range

One, Two and Three bit errors

Arbitrary
Value-Asymmetric
Timing-Symmetric
Timing-Asymmetric

Occurrence: Undefined r

Undefined

Mo occurrence descriptor has been defined.

Mew Error Semantic I

| Error Descriptor Set | Error Descriptor |

Figure 6: Error Descriptor page of the Component Error Descriptors Editor

The third editor is dedicated to the Component Error Model (CEM), defining the error characteristics of a
specific component in the system architecture model. This model has three primary elements, each of
which is supported by different pages of the editor. The first page (shown in Figure 7) supports the
specification of a component in the architecture model to which the model applies. This places the error
model into a context and allows deployment specific aspects to be incorporated into the error model
definition. From within this editor page there are hyperlinks with supporting descriptive text that provide
an alternate means of accessing the other two editor pages.

The second part of the CEM supported by this editor is the definition of the set of "exhibited" errors that
describe errors that may originate from a component. The exhibited error specification consists of a
selected Component Error Descriptors model (see Figure 8) augmented with a set of deployment
properties that may refine the way in which errors originating at the component propagate outward into
the system. The "Output Constraint” property allows the user to precisely define the subset of outputs
over which a specific kind of error originating from the component will propagate.

Component Error Model
System Architecture Model: Modeling Component Errors
controlSysl_full AT There are two parts to a component error model:
Architecture Component: Exhibited Errors
ch2lnterchangeThread

System - userlnterfaceSubsystem
System - coreCentrolSubsystem
Bus - xChinterBus
System - chlCoreCentrol
System - ch2CoreCeontrol
Bus - ch2LocalBus
Device - ch25ensor

Process - ch2CoreControlProcess
Process - ch25ensorValidationProcess
Process - ch2xChValidationProcess

& component.

Transformed Errors

this component,

Specify or change the characterization of errors that may originate from this

Specify or change the way in which in-bound errors may be transformed by

m

| Thread - ch2InterchangeThread |

Processor - ch2Processor
System - ChlloControlSubsystemn
System - Ch2loControlSubsystem
System - dataRecordingSubsystem

Carrtarn - mavinatianCohorctam

Thread - ch2ValidationThread

Summaryl Exhibited Errors | Transformed Errors|

Figure 7: CEM Editor, "Summary" Page

Exhibited Errors

Error Descriptor Set
systemControlThread.scedml

Error Descriptor Deployment Properties

Error Descriptor: Deployment Properties:

= compErrorDesc
actuatorDevice.scedml
dataRecordingThread.scedml
deviceControlThread.scedml
sensorDevicescedml
sensorFilteringThread.scedml
systemControlThread.scedml
touchscreenDevice scedml
userDisplayDevice.scedml
userlnputThread.scedml

Value-Symmetric, Range

ymmetric, Arbitrary

Benign-Symmetric, Fail Stop

Output Restriction Property

allowed.

Select the output interfaces and influences over which propagation will be

[ch2CmdExchangeOutput] te chlValidationThread[ch2CmdDatalnput]

E[chZCde}u‘tput] to ch2ValidationThread[ch2 CmdDatalnput];

[Influence] Interchange to chllnterchangeThread

Remaove

Summary | Exhibited Errors] Transformed Errors|

The final part of the CEM that is defined through this editor is the error translation description, which

Figure 8: CEM Editor, "Exhibited Errors" Page

models how errors that arrive at a component (either directly via input interfaces, or indirectly through

influence relationships) undergo transformation (if any) and subsequent propagation. The "Transformed
Errors" page of the CEM editor is depicted in Figure 9.

The error transformation behavior is defined through a set of rules that govern the effect of the error on
the components outputs. To define a rule the user first selects a set of error sources with which to work.
For those error sources, a set of one or more transformed semantics are defined. The semantics describe
the kinds of errors for which a transformation is being specified. Then the resulting error semantic
propagated out of each output interface or influence relationship is specified. For each output this result
may be a specific semantic, the semantic that was propagated into the component, or no propagation. The
user may also define a default rule that defines the transformation behavior for all error arrivals that are
not specifically defined in an existing rule. In the future, this editor will also provide us the means to
associate probabilities with the transformation targets so that we can model probabilistic selection of the
error transformation. The addition of probabilistic data will allow for the development of stochastic
analysis algorithms for error containment and propagation effects.

ch2InterchangeThread &3 =8

Transformed Errors

Transformation Rules

Edit Transformation Rule Edit Transformation Outputs
Name: Interchange Error -
[l Apply as default for all inputs 1. [ch2CmdExchangeOutput] te chlValidationThread[ch2Cme

Semantic: |Input semantic (no transformation)

Input interface or influence relationship:

[[] ch2CoreControlProcess[deviceCommandOut
[Influence] Interchange from chilnterchange 2, [ch2CmdOutput] te ch2ValidationThread[ch2 CmdDatalnpu

a | m] b Semantic: |Input semantic (no transformation)

Input errer semantics:

»

i+ [Value-Symmetric

1> [[] Value-Asymmetric

4 @ Timing-Symmetric
Timing-Symmetric, Slow
Timing-Symmetric, Late
[] Timing-Symmetric, Fast
[] Timing-Symmetric, Early

Add i [T Timina-Asvmmetric i "

— 3. [Influence] Interchange to chllnterchangeThread:

Semanticc | Mone

m

Summary | Exhibited Errors | Transformed Errors

Figure 9: CEM Editor, "Transformed Errors" Page

1.3.3. Error Mitigation Modeling

The Error Mitigator Model (EMM) defines a mechanism that is capable of detecting and/or tolerating
errors. A mitigation mechanism might be a 3-way data voter, a CRC checker, or a value range checker.
The Component Error Mitigation Model (CEMM) defines for a given component all of the component's
error mitigation mechanisms that operate on a specified set of error sources. Input interfaces and
influence relationships are supported as inputs. Influence relationships describe paths over which error
propagations may occur as the result of the component's architectural context (as opposed to a
component's described interfaces).

Majority Voter &3 =5

Error Mitigator Model

Meodeling Error Mitigation Properties

Error Mitigator Description for Majority Voter:
'gat P Jortty There are three property areas for an Error Mitigator model:

This mitigator describes a exact match majority - . .

voter Model Detection Properties
Specify or change the error detection properties of this
mitigator,

Model Toleration Properties

Specify or change the error teleration properties for this
mitigator,

Specify or change the error teleration properties for this
mitigator.

Error Mitigator Description‘ Detection Properties| Toleration Properties|

Figure 10: EMM Editor, "Error Mitigator Description" Page

The EMM editor allows the user to define specific mitigation mechanisms that represent the error
detectors and error toleration mechanisms used in the architecture. Figure 10 depicts the first page of the
EMM editor, which allows the user to provide a textual description of the mechanism being modeled.
The Detection Properties page (see Figure 11) provides the user with the ability to define those error
semantics that the mechanism is capable of detecting. The detection characteristics for a particular error
semantic may be further described as being deterministic (the error is always detected), or probabilistic.

10

Majority Voter &2 =5

Error Mitigator Detection Properties

E Semantics Detected
o Semanic peecn

Selected Error Semantic:

Deterministic

Value-Symmetric: Range o o
Deterministic: - Semantic is always detected

4 Value-Symrmetric

|Range|
One, Two and Three bit errors
Arbitrary

Rermowve Error Semantic

Add Error Semantics To Detect

Selected Error Semantic:

Undefined
Benign-Symmetric -
Benign-Asymmetric [
Value-Symmetric 8

Add Error Semantic
Error Mitigator Description | Detection Properties | Toleration Properties|

Figure 11: EMM Editor, "Detection Properties" Page

The Toleration Properties page provides the user with the ability to define the error semantics that are
fully handled by the mechanism. A screen shot of this editor page is presented in Figure 12. Note that we
currently assume that toleration is always deterministic. Controls are provided in the UI for the user to
move error semantics between the tolerated and not-tolerated categories. (Note that, by default, all known
error semantics fall into the not-tolerated category; the user must explicitly add a semantic to the tolerated

category.)

As with the Component Error Descriptor model editor, the error semantics from which the user may
choose are collected from the "library" of semantics that have been created. As the user adds or removes
error semantics from this library, options likewise change for semantic assignment to detection and
toleration properties of a given error mitigator. In addition, like the error semantics, it is the case that the
group of defined error mitigation mechanisms forms a mitigation mechanism library that may be
referenced in subsequent models of the error handling infrastructure.

11

Majerity Voter 53 =5

Error Mitigator Toleration Properties

Error Semantics Tolerated

Selected Error Semantic:

Value-Symmetnic: Arbitrary

4 Value-Syrmmetric
Range
One, Two and Three bit errors
|Arbitrar}f|

[Remowve Error Semantic I

Add Error Semantics To Tolerate

Selected Error Semantic:
Undefined

Benign-Symmetric -
Benign-Asyrmetric (o
WValue-Symmetric 8

Add Error Sermantic]

Error Mitigator Description |Detectior1 Properties lToIeration PropertiesJ

Figure 12: EMM Editor, "Toleration Properties" Page

The CEMM Editor was also implemented as a multi-page model editor. Figure 13 is a screen shot of the
Component Selection page of the editor which allows the EDICT user to associate the CEMM with an

architecture component and displays a summary of the error mitigation mechanisms currently deployed
by the selected component.

Once a system architecture component has been selected, error mitigators may be deployed to the error
sources that are inputs of the component to mitigate the effects of errors that enter the component. Error
mitigator deployment is specified on the Mitigator Deployment Tab and can be accessed either through

the hyperlink on the right hand side of the Component Selection area or through the tabs at the bottom of
the editor.

12

Component Error Mitigation Model

System Architecture Model: Meodeling Component Error Mitigators
controlSysl_full AT Mitigator Deployment
Architecture Co nt:
£ Iy Specify the mitigation mechanisms that are to be deployed with the
chlinterchangeThread component.
Device - contrelSurface -

System - userlnterfaceSubsystemn
System - coreControlSubsystem I
Bus - xChinterBus
System - chlCoreControl
Bus - chllocalBus
Device - chlSensor

Current Mitigators for this Component

Process - chlCoreControlProcess Timeout with use last

Process - chlSensorValidationProcess
Process - chlxChValidationProcess
| Thread - chlinterchangeThread |
Thread - chlValidationThread
Processor - chlProcessor
System - ch2CoreControl
Systemn - ChlloControlSubsystem
Systemn - Ch2loControlSubsystem
System - dataRecordingSubsystem

m

System - navigationSubsystem

Component Selection] Mitigator Deployment|

Figure 13: CEMM Editor, "Component Selection" Page

Figure 14 shows the Mitigator Deployment page of the CEMM editor. The input interfaces and other
potential error sources such as influence relationships from related system components are listed on the
left hand side. These error sources are determined dynamically based on the specific component that was
selected, and thus will change if the user returns to the Component Selection page and chooses a different
component. This context sensitivity ensures that the CEMM model is consistent with the structure of the
system's architecture.

Component Error Mitigation Model

Architecture Component: Mitigator Deployment
chllnterchangeThread Deploy itig Available Mitigators
Selected Connection o [Timeout
[Influence] Interchange from ch2Intercha | <-Add Mitigater | Synhronized Window

SyncWindow Rebroadcast
StaticRangeCheck

Majority Voter

Majority Voter with Rebroadcast

HeartBeat

Checksum

Basic CRC

chlCoreControlProcess[deviceCommand(

[Influence] Interchange from ch2Intercha

Mitigator Scope

Components In Scope System Components

Thread - ch2InterchangeThread Device - ch25ensor e
Process - ch2CoreControlProces
Process - ch2SensorValidationPr
Process - cthCh\c"aIidationProc-EI
Thread - ch2InterchangeThn
Thread - ch2ValidationThrea
o T | Processor - ch2Processor -

4 mn 3
Component Selection | Mitigator Deployment]

| <-Add To Scope |

| Remove From Scope -> |

Figure 14: CEMM Editor, "Mitigator Deployment" Page
13

The user is then able to select an error source and add/remove error mitigators using the top set of
controls on the right side. The set of widgets in the Mitigator Deployment area list the current mitigators
that are deployed for the selected error source and the available set of mitigators that are contained in the
error mitigator library for the project. The editor provides a set of buttons to add/remove mitigators from
the error source.

The scope of the mitigator can be set once a mitigator is deployed to a component. The mitigator scope is
used to describe the set of components for which the mitigator is able to detect errors. For instance, if a
cyclic-redundancy-check (CRC) mitigator is deployed, it is only able to detect and correct errors that
occur in components that lie on the path between where the CRC code was originated and the location of
the CRC checking mechanism. System components may be added or removed from the mitigation
mechanism's scope using the associated controls. The mitigation scope may then be used to provide
additional accuracy and specificity to analyzers that are responsible for determining whether or not a
mitigator is capable of detecting and/or tolerating a given error.

1.3.4. Error Modeling with Influences

The Influence Relationship Model (IRM) allows the specification of influence relationships by which an
error at one component may induce an error in another component by means other than physical
interfaces between the two components. This sort of relationship may reflect existing architecture
constructs (for example, bindings between processes and threads or processors and memory) or
environmental influences between hardware components or from a component that represents the
operational environment.

The IRM editor is implemented as a multi-page editor with two pages: A page for the definition of types
of influences and a page for specifying individual instances as they exist in the architecture under
analysis. Influences and influence types for an entire system architecture may be specified in a single
editor. Figure 15 illustrates the Influence Relationship Types page, in which all of the existing influence
types are listed and may be edited or removed, and new types may be created. A type may be annotated
with a name and a description, and the sets of component types that are eligible to be source and
destination components are selected from lists of available types.

Figure 16 illustrates the Influence Relationships page, in which influence relationships of any defined
type may be established between eligible components. When an influence relationship type is selected on
this page, only components whose types are included in the list of valid source component types for that
influence type are available for selection. When an influence type and a source component have been
selected, the available destination components are filtered according to the list of valid destination
component types for the influence type. A set of destination components may be selected, signifying that
influence relationships exist between the source component and each of the destination components.

14

Influence Relationship Types

System Architecture Model:
controlSysl_full AT

Influence Types

Process

Interchange Thread-Process Binding
Thread-Proc: nding

Name of Influence Type:

Type Description:
Defines a binding of a thread / process to a processor -
Source Component Types: Destination Component Types:
Bus = Data -
Data Device LIl
Device External Device
External Device External Systemn
External System External User
External User E Memory
Memory Process £
Process Processor
Processor Systemn
System Thread
Thread M Thread Group L
Thread Group - -
Influence Relationship Types] Influence Relationships|
1 . 1 " 1 1 n
Figure 15: IRM Editor, "Influence Relationship Types" Page
=l SamplelrMadel 53 =0
Influence Relationships
Influence Type Source Components Destination Components
Select the type of influence to deploy: Select a component to deploy influences of type Influence relationships of type Thread-Process

Thread-Process Binding = SIS

Thread-Process Binding from it to the destination

components selected below:

Binding exist from dataRecordingProcessor to the

4 System - userInterfaceSubsystem

Defines a binding of a thread / process to a processor b Process - usernterfaceProcess

> Processor - usernterfaceProcessor
System - coreControlSubsystem
System - ChlloContrelSubsystem
System - Ch2leContrelSubsystem
System - dataRecordingSubsystem

- Process - dataRecordingProcess

1> Processor - dataRecordingProcessor
| System - navigationSubsystem

AT T W

userInterfaceSubsystem |
coreControlSubsystem
3 ChlloControlSubsystem
4 [H| Ch2loControlSubsystem

4 [H| ch2leControlProcess
ch2DeviceControlThread

ch2loControlProcessor

4 [H] dataRecordingSubsystem

4 dataRecordingProcess
dataRecordingThread
dataRecordingProcessor
3 navigationSubsystem

Influence Relationship Types llnfluen ce Relation sh\p;]

Figure 16: IRM Editor, "Influence Relationships" Page

15

1.3.5. Error Model Management

The EDICT Tool suite provides a method for managing all of the error and error mitigation models that
are created to describe the error behavior of the system. The Error Handling Aspect Editor provides a
single place where all of the models that are associated with architecture components can be managed
from. This editor provides functions for creating, editing and configuring all of the model types along
with integrated status reporting based on the model verifiers.

The Error Handling Aspect Editor is implemented as a multi-page editor with three pages: A page for
associating Component Error Models (CEM) with system components, a page for associating Component
Error Mitigation Models (CEMM) with system components, and a page for associating an Influence
Relationship Model with the selected system architecture model.

Figure 17 illustrates the page for CEM selection. A component may be selected from the component tree
on the left to view its aspect status. If one or more CEMs exist for the selected component, one may be
selected using the status panel on the right. The selected CEM will be associated with the architecture
model as augmenting information available to the error handling analyzers. A component may be
designated to have no CEM associated with it. Analyzer handling of this designation is determined by
analyzer configuration. The status panel also permits creation of a new CEM or editing of the selected
CEM. Icons in the tree view indicate the verification status of a component’s CEM association or that of
its children. Each model type has an associated verifier that checks for the structural integrity of the
model when the aspect editor is launched or models are saved. Icons status is propagated up the tree view
so that sub tree elements with errors or warnings are not hidden when the branch is collapsed.

o[2 ehAspect-Secondary &2 =08

System Architecture - Error and Error Handling Aspect Within Context

& Error Model Set | «§ Error Mitigators Set | v Influence Models |

Systemn Architecture: controlSys_Scenario B-5e | Selected Componentt chlActuator

+4, Bus systemBus Component Error Model Defined

+4 Bus hydraulicBus
CEM Name: chlActuator

v4, Device controlSurface
CEM Status: Verification Passes

> g System userlnterfaceSubsystemn
> 4 Systemn coreControlSubsystern
4 (& System ChlloCentrolSubsystem Compaonent Error Model Actions:
+4, Bus localBus
~ Device chlActuator
» 4 Process chlloControlProcess

Edit Component Error Model
View or modify the CEM it its model editor.

Choose an existing Component Error Model

& Processor chlloControlProcessor

1Y

& Memory localMermory Select an existing CEM that has already been defined for this component.
s w/‘ System Ch2loControlSubsystem Create a new Component Error Model
> 4 System dataRecordingSubsystem Create a new CEM and associate it with this component.

4 v System navigationSubsystem Designate Mo Component Error Model

+4 Bus localBus . . . N
I Denecte that this component will not have an asscciated CEM augmenting it.
v4 Process navigationProcess

v

~4 Processor navigationProcessor

Figure 17: Aspect Editor, "Error Model Set" Page
16

The auto-augment feature shown in Figure 18 automates the process of associating CEMs with
components. The user may select two options: 1) to designate that there is “No CEM” for all components
that do not currently reference a CEM, or 2) the tool will find any existing CEMs that could apply and
complete the architecture references where possible. The auto-augment features provides a way to
generate an analyzable architecture model without requiring the user to fully specify the error models for
all of the architecture components. This is useful when performing incremental development and
analysis. The features and interface of the page for CEMM selection are identical to those of the page for
CEM selection.

- ~
= Component Error Model Property Aqmenm{hllélég

Auto-Augment Engine Configuration

|| Configure options for the Component Error Model auto-augment engine.

Please configure the options associated with the automated CEM augmentation service.
This service will attempt to automatically establish properties that define Component
Error Models that augment System Architecture components.
Fill-in with "No CEM" Entries.
If no CEM can be found for a given component, a "No CEM” entry will be built for the
component automatically.
[] Override "No CEM” Entries.
If a component already has an associated "No CEM" entry, but a CEM is found that
supports the component, the “No CEM® entry will be removed and a relationship with
the CEM will be produced.
[C] Save on Completion
The aspect model will be saved following completion of the automated CEM property
augmentation service,

MNOTE: Valid relationships that have already been established in augmentation
properties bewteen System Architecture components and valid Compenent Error
Models will NOT be changed.

@ [Finish][cConcel

Figure 18: Aspect Editor, "Auto-Augment Engine Configuration" Dialogue

Figure 19 shows the final Error Handling Aspect Editor page for Influence Relationship Model (IRM)
selection. This page identifies the IRM currently associated with the system architecture model and
reports the verification status of the IRM. From this panel the current IRM may be edited, a new IRM
may be created, or an existing IRM may be selected.

(2 ehAspect-Secondary i3 =5
System Architecture - Error and Error Handling Aspect T
[& Error Model Set | v4 Error Miti Set| v Influence Models |

System Architecture: controlSys_Scenario B-Secondary-EH_fullAT

Influence Relationship Model Defined

IRM Mame: SamplelrModel
IRM Status: Verification Passes

Influence Relationship Model Actions:
Edit Influence Relationship Model
View or modify the IRM it its model editor,
Choose an existing Influence Relationship Model

Select an existing IRM that has already been defined for this architecture.

Create a new Influence Relationship Model

Create a new IRM and associate it with this architecture.
Designate Mo Influence Relationship Model

Denote that this architecture will not have an associated IRM augmenting it.

Figure 19: Aspect Editor, "Influence Models" Page
17

1.4. EDICT Error Propagation Analysis

1.4.1. Approach

The EDICT error handling analysis tools provide the capability to trace potential error propagation paths
and determine architecture components exposure to different error semantics based on information in the
component error and error mitigation models. This analysis is performed on a specified set of errors and
components exhibiting the errors, and follows each error’s propagation over interfaces or influence
relationships, its mitigations (toleration or detection), and its transformations at each component.

An error propagation scenario consists of a specific set of components, a set of exhibited errors for each
component (that must be a subset of the exhibited errors specified in its Component Error Model), and a
set of outgoing connections (a subset of the outputs permitted by the output restrictions in the Component
Error Model, if any) for each component from which the errors will propagate. If an error semantic
reaches a connection that is an input for a component, any mitigator for that semantic and input is applied,
and if the semantic is not tolerated, error transformations are applied. The semantic resulting from any
applicable transformations is propagated out of each output connection. This process continues,
accounting for cycles in the propagation, until all resulting paths have been followed for the appropriate
error semantics.

The result of this computation is a worst-case perspective on the potential error exposure of each
component given the initial scenario, since probabilities of error exhibition, transmission, transformation,
and mitigation are not yet accounted for. The analysis constructs a summary for each component, a
propagation trace for the entire system architecture, and a tree of the paths by which each error semantic
reached each affected component.

1.4.2. Error Propagation Analyzer

The Error Propagation Analyzer (EPA) consists of a page for configuring an error propagation scenario
and a page for performing the analysis and examining the results. Figure 20 shows the configuration
page. Any number of components that have Component Error Models defined may be selected from the
system architecture diagram as error sources. When a component is selected, the exhibited errors listed in
its Component Error Model may be refined by selection of a subset of the errors. For each of these errors,
the outgoing connections of the component (interfaces or influence relationships) are presented, and may
be selected if there is no output restriction defined in the Component Error Model for that particular error
or if the output restriction permits propagation on that connection.

The Error Propagation Analyzer has two models of operation: Normal and Pessimistic. If Normal mode
is selected, propagation will halt if Component Error Models are missing or incomplete for components
encountered in error propagation. If Pessimistic mode is selected, such errors will be reported, but
propagation will continue using a worst case assumption that the error semantic propagates out of any
unhandled outgoing connections without transformation.

18

Error Propagation Configuration
Run Autornatically

Analyzer Mode: System Architecture Model:

Description:

- coreControlSubsyster

Multi-Source Configuration chiCoreControl
xChinterBus

Selected Source Components: —
= chllocalBus chlSensor chlCoreControlProcess
chlSensor =

Sy [[

|m

chlSensorValidationProcass chixChValidationProcess
E— E—
Selected Errors: — —

4 LIS

[] All Modeled Errors

Custom Selection Selected Connections:

Value-Symmetric, One, Two and Three bi | Value-Symmetric, One, Two and Three bit errors | Value-Symmetric, Range | Value-Symmetric, Albi‘tlal}l’|
[¥] Value-Symmetric, Range [¥] All Modeled Connections

Value-5ymmetric, Arbitrary Custom Selection

[[localBusConnection_REV] to chllocalBus[chllocalBus_REV] (Mot permitted due to Qutput Restriction property)
| [rawSensorSignal] to chlSensorExThread[chl SensorDatalnput]

< 1

Configuration] Results|

Figure 20: EPA Editor, "Configuration" Page

Figure 21 shows the Analysis Results portion of the Results page. This view presents a trace of all error
paths throughout the system architecture for the current analysis scenario. Components and interfaces are
color-coded to indicate whether an interface has transmitted any errors (red lines) and whether a
component has been affected by (red), tolerated (green), or detected (yellow) any errors. This
highlighting shows the paths that the errors take from the source of the errors until they are tolerated or

reach the system boundary. If multiple error semantics are selected at the source component then the
traces for each of the semantics are overlaid on the diagram.

When a component in the diagram is selected the error exposure summary (on the right hand side)
presents a list of error semantics that arrived at the component. For each error semantic the immediate
source of that error is shown. When a semantic is select from this list the Error Details displays (bottom

right) displays propagation related details such as if the semantic was detected or tolerated and if so by
what mechanism.

19

Error Propagation Scenario Results

Analysis Results | Error History | @ Analysis Log|

System Model Propagation View

Error Exposure Summary

Component: ch2SensorValThread

chiCoreControlProcess ch2localBus ch2Sensor ch2CoreControlProcess

[sy L [& Value-Symmetric, Range

(from chlSensorExThread |
ChValidationProcess ch25ensorValidationProcess ch2xChValidationProcess

rhilnterchangeThread ch2interchangeThread

U Thosad U Thosad
chiValidationThread ch2ValidationThread .

S o = Error Details

Error Semantic: Value-Symmetric, Range

Error Origin: chlSensor
Detected: Yes

Mechanism: StaticRangeCheck
Tolerated: Mo

Mechanism: MNone

4 LIS 3

Configuration lResuIts]

Figure 21: EPA Editor, "Results" Page, “Analysis Results” Tab

Figure 22 illustrates the Error History portion of the Results page. This view shows all paths by which a
selected error semantic reached the selected component. This permits a quick and thorough diagnosis of a
specific threat to a particular component. The diagram is color-coded like the system architecture
diagram in the Analysis Results view and additionally depicts influence relationships in the propagation
paths and provides visual indication of error transformations. Mouse-over text for the arcs and nodes in
the diagrams provides quick access to information on the semantics involved in a path and any mitigation
that occurred. This example depicts a case where there are two propagation paths from the Ch1Sensor to
the Ch2InterchangeThread for the Fail Stop error semantic. On one path the error is detected but not
tolerated (yellow component) and on both paths the error is transformed on its way to the
Ch2InterchangeThread (components that contain the gears icon). The dynamic mouse-over displays
provide more details on each step of the propagation.

20

=| Sensor Range Error &3

Error Propagation Scenario Results

Analysis Results | Error History | @ Analysis Log

Propagation history for error:

"Benign-Symmetric, Fail Stop” at component ch2InterchangeThread

Configuration l Results]

m

a4

Figure 22: EPA Editor, "Results" Page, “Error History” Tab

Figure 23 shows the Analysis Log portion of the Results page. This log reports any warnings or errors
pertaining to problems encountered with the execution of the analyzer. Problems reported include the

absence of expected Component Error or Error Mitigation Models or data that is missing within the
models.

. =B
Error Propagation Scenario Results

Analysis Results | Emor History | © Analysis Log
Analysis Log Reports

@ Error Reports:

1) Error During - A problem was encountered when the error reached a Algorithm message: "ch2InterchangeThread: No transformations sp
2) Error During - A problem was encountered when the error reached a Algorithm message: "ch1ValidationThread: No transformations spe
3) Error During Prop - A problem was encountered when the prop error reached a Algorithm message: "userDisplay: No transformations specified for |
Nl il G
@& Warning Reports:

No warning reports present.

Configuration | Results

Figure 23: EPA Editor, "Results" Page, “Analysis Log” Tab

21

2. Analysis of the SPIDER Architecture

In order to evaluate the error modeling and analysis capabilities of the EDICT tools we have constructed
error models and performed propagation analysis on a 3x3 Spider architecture. This effort used the
AADL model developed by the team under this effort. Our analysis concentrated on the PE Broadcast
Protocol and the error detection and mitigation that is applied to data flows through the ROBUS
architecture. These models of mitigators and data flow assume that the ROBUS elements are
synchronized and in a steady state.

We developed error models for the Bus Interface Units (BIUs), Redundancy Management Units (RMUs)
and the Processing Elements (PEs). These models were used as sources of errors that were then
propagated through the architecture based on the PE Broadcast data flows. We were able to evaluate the
ability of the EDICT tools to represent the expected error propagation behavior and error mitigation
behavior as defined in the protocol. The error sources considered representations of errors in the value
and time domains, along with both symmetric and asymmetric error distributions.

EN:W [T» SpiderLogicalArchite |=,_; Browsing SpiderArchi | [2] BIUL-buslnterfaceUni | |T_5] BIUL-buslnterfacelni &3 ___»4 =T

Exhibited Errors | Spider-SysC omp.:_a'team_-"errcl
Error Descriptor Set Error Descriptor Deployment Properties
BIU-Device.scedml Error Descriptor: Deployment Properties:
4 (= compErrorDesc Benign-Symmetric, Fail Stop No Properties Exist
|[E] BIU-Device.scedml Value-Symmetric, link-corrupt
E PE-Thread.scedml Value-Symmetric, header-corrupt Add

Timing-Symmetric, Late
Timing-Symmetric, Fast
Timing-Symmetric, Early
Value-Symmetric, AnyValue
Value-Asymmetric, AnyValue

[2| RMU-Device.scedml

No Property Selected

Please select an error descriptor deployment property to configure.

| New | [Edit |

Summary | Exhibited Errors | Transformed Errors

Figure 24 - BIU Error Model

Figure shows the error model for the BIU that was developed in the EDICT Component Error Model
Editor. The semantics cover both simple failure modes such as fail stop and more complex errors such as
the Any-Value symmetric and asymmetric errors. The error set shown in Figure 24 represents the error
semantics that may be originated from the BIU on the data paths that are associated with the PE Broadcast
Protocol. They will be refined and expanded over the development period of the project. Similar models
were developed for the PEs and the RMU .

22

The component error model is also capable of modeling error transformations that happen in the
component when errors arrive or when they are processed by error mitigators that are deployed to the
component. Figure 25 is a screen capture from the error transformation tab on the Component Error
Model editor for the BIU. This editor tab allows the definition of transformation rules that describe the

relations between error semantics that arrive at the component inputs and the semantics that are
propagated out of the component.

% + SpiderArchitecture_fullAT o3 SpiderArchitecturefspect BIU3-busnterfaceUnitDevice BIUL-buslnterfacelnitDevice i PEL-Thread PE2-processingElementThre;

Transformed Errors

Transformation Rules
Edit Transformation Rule Edit Transformation Outputs
PE-Default
RMU Mame: pe-Interface
PE-Interface
0 Apply as default for all inputs 1. [interconnectccess_REV] to interconnect[interconnect_REV]:
Semantic: | None -

Input interface or influence relationship:

processingElementThread[toBusnterfacelnit
D interconnect[interconnect] to [interconnectA 2. [toProcessingElement] to processingElementThread[fromBusInterfaceUnit]:
[redundancyManagementUnitDevice[toBuslnt
[redundancyManagementUnitDevice[toBuslnt
[redundancyManagementUnitDevice[toBuslnt

Semantic: | None A

3. [toRedundancyManagementUnitl] to redundancyManagementUnitDevice[fromBusInterfaceUnit1]:

4 1 | 3 Semantic: | Benign-Symmetric, PE_ERROR A

Input error semantics:

4[] Value-Symmetric
Value-Symmetric, link-corrupt 4, [toRedundancyManagementUnit2] to redundancyManagementUnitDevice[fromBusInterfaceUnitl:
[Value-Symmetric, header-corrupt

S tic: |Benign-5: etric, PE_ERROR -
+ [F1] Benign-Symmetric emantic: | Benign-Symmetric, PE_|
[] Benign-Symmetric, SOURCE ERROR
[] Benign-Symmetric, PE_ERROR.
Benign-Symmetric, PE-Local 5. [toRedundancyManagementUnit3] to redundancyManagementUnitDevice[fromBusInterfaceUnit1]:
Benign-Symmetric, Fail Stop Semantic: | Benign-Symmetric, PE ERROR -

Summmary | Exhibited Errors | Transformed Errors

Figure 25 - BIU Error Transformations

These rules describe the transformation behavior and the routing of error flow through the component.

We have developed transformation models for the BIU and RMU components that address the data and
error flow in the PE Broadcast protocol.

We used these techniques to model the error messages that ROBUS uses to inform downstream nodes of
the results of error detectors. EDICT does not provide a distinct capability for representing these error
reports, so we have defined additional error semantics that are used to represent the error reports that
ROBUS introduces to the normal data flow when detectable error conditions are encountered. This
technique is useful because it represents the continued flow of the effect of the source error and allows
downstream error detectors and mitigators to properly respond to the error messages.

Error mitigators were developed that represent the error detection and toleration characteristics of the
Communication, In-line and Cross-lane checks that are performed in the ROBUS for the PE Broadcast
protocol. We have developed an initial set of mitigators and deployed them to the BIU and RMU

23

components using the Component Error Mitigation Model capabilities in the EDICT tools. Figure 26
shows the error mitigators that have been deployed to the BIU. They are able to represent the
Communications Checks, the In-line Checks and the Cross-Lane checks that the BIU performs.

Iy_; SpiderArchitecture full AT £ o SpiderArchitectureAspect BIU3-buslnterfaceUnitDevic BIU1-buslnterfacelnitDevic PE1-Thread PE2-pracessingElementThrea BIU1-busInterfaceUnitDevic &3

Component Error Mitigation Model

Architecture Component: Mitigator Deployment
buslnterfaceUnitDevice Deployed Mitigators Available Mitigators
Eekecedliyiatface Comm Check AMU-Inline
Input Frem: redundancyManagementUnitDevice[toBusInterfaceUnitl] On: [fromRedundancyManagementUnit3] BIU-Inline <-Add Mitigator PE Interface Check
p , : Timeout
Input From: processingElementThread[toBusInterfaceUnit] On: [fromProcessingElement]
Input From: interconnect[interconnect] On: [interconnectAccess] - Synhronized Window
P e . . SyncWindow Rebroadcast
Input From: redundancyManagementUnitDevice[toBusInterfaceUnitl] On: [fromRedundancyManagementUnitl] StaticRangeCheck
Input From: redundancyManagementUnitDevice[toBusInterfaceUnitl] On: [fromRedundancyManagementUnit2] Median Sg\irtur
Input From: redundancyManagementUnitDevice[toBusInterfaceUnitl] On: [fromRedundancyManagementUnit3]
Majority Voter
Majority Voter with Rebroadcast
HearBeat
Checksum
Basic CRC
Mitigator Scope
ComponentsIn Scope System Components

Device - redundancyManagementUnitDey

Bus - pelRobusl
Device - redundancyManagementUnitDey s pe-Ronu

Device - redundancyManagementUnitDey <-Add To Scope Bus - pelRobus?
Device - buslnterfaceUnitDevice Bus - pe3Robus3
Device - busnterfaceUnitDevice System - processingElementl
Device - buslnterfaceUnitDevice Remove From Scope -> System - processingElement2

System - processingElement3
System - robus

Component Selection | Mitigatar Deployment

Figure 26 - BIU Error Mitigation

With these models in place we conducted an initial set of error propagation analyses using the PEs, BIU
and RMU s as error sources. The propagation analysis evaluates single error manifestations and
determines the error flow path according to the PE Broadcast data flows and the error mitigation
mechanisms that have been deployed in the ROBUS model.

Figure 27 is a screen shot from the propagation experiment that uses BIU1 as the source of error. This
analysis shows a varied set of error semantics propagated with varying impact to the system. Some errors
are detected and then passed on with benign semantics in the form of error messages, some are tolerated
by the receiving BIUs while others are propagated though the entire architecture to all receivers. The
error propagation analyzer also supports the visualization of the history of specific error semantics
through the propagation.

By constructing several of these scenarios with the various ROBUS components and Processing Elements
as error sources we were able to develop an error profile for the PE Broadcast Protocol that represents the
error behavior of the ROBUS when exposed to the error set we have defined. This error profile is useful
when representing the ROBUS as a component in architecture models at higher levels of abstraction.

24

PEL-Thread B & =B

Error Propagation Scenario Results |

PE
Some errors RMUs
v Resus propagate out - Many of the errors are
System Model Propagatiof View| Broadcast flows Source of errors transformed into

benign error messages |
UnitDevice

(£] Benign-Symmetric, SOURCE_ERROR n
from redundancyManagementUni...
| | ¥ Benign-Symmetric, SOURCE_ERROR-|
from redundancyManagementUni...
& Value-Asymmetric, AnyValue

[

Error Details

Error Semantic: Benign-Symmetric,
BIUS Error Origin: buslnterfaceUnitDer
Detected: No

Mechanism: Nene
Tolerated: Yes

Mechanism: Crosslane-BIU

Detectand
tolerate some of
the errors

Configuration | Results

Figure 27 - Error Propagation from a PE

3. Layered Error Modeling

Based on the results of our ROBUS architecture analysis we began to explore concepts for layered
modeling and analysis of architectures at multiple levels of abstraction. Our initial efforts concentrated
on using the ROBUS element in the Spider model, condensing all of the error propagation analysis on the
detailed model into a single set of Component Error and Component Error Mitigation models that
represents the characteristics of the bus as a whole. This model was then integrated with a simple
application architecture that exchanges sensor data across the ROBUS. The goal of this work is to
develop approaches for representing errors and semantics that are consistent at many levels of abstraction.

A diagram that represents the layers of abstraction that were modeled is shown in Figure 28. The lower
level shows the detailed architecture of the ROBUS portion of the SPIDER architecture. Error and
mitigation models where developed and error propagation analysis was performed on the network layer
architecture model. The results of the error propagation analysis were used to build error and mitigation
models for the ROBUS component in the Application Layer Architecture Model.

25

The process for collecting the results at the Network Architecture level and composing higher level
architecture models that represent these results at the Application layer is a manual process that relies on
separate architecture models with current technology. Consistency between the models is enforced by the
user and requires active management of the models to obtain consistency. This exercise shows the
potential for integrating models at multiple levels of abstraction to provide for consistency between error
models at the various levels. This capability allows for analysis to be performed on a given level of
abstraction that is consistent with supporting assumptions and more detailed modeling. As the project
progresses we will evaluate the modeling techniques and tools required to automate this process.

=

Application Layer

Architecture o S

Model

Composed Error and
Mitigation model
representing
network layer

Network Layer

i Detailed Error and
Architecture Mitigation Models
Model per component

Figure 28 - Layered Error Modeling
26

A sensor broadcast exchange was modeled at the Application Layer that uses the ROBUS PE Broadcast
protocol to exchange sensor values between all of the PEs. The addition of voting and error mitigation
mechanisms to the PEs to handle errors sourced to the PEs, the sensors and the ROBUS allowed for the
evaluation of error propagation at this level of abstraction. Error propagation analysis was performed to

evaluate the effectiveness of the application error mitigation strategy when combined with the error

mitigation capabilities of the ROBUS. Figure 29 is a screen shot from the error propagation analysis that

shows errors in a single sensor being tolerated at the receiving processing elements.

PEL Sensorl i3 | [ROBUSIntemal | | ROBUS-BIULInterf... | [E/ PE1 1% SensorAppBroadcast |72~ O
Error Propagation Scenario Results
Analysis Results Analysis Log
Analysis Results | Error History | Analysis Log
System Model Propagation View Error Exposure Summary
Component: PE2
v Value-Symmetric, Arbitrary
m’_" from ROBUS
~ Benign-Symmetric, SOURCE_ERROF
from ROBUS
£| Error Details
Error Semantic: Benign-Symmetric,
Error Origin: Sensorl
Detected: Yes
Mechanism: PE App Voter
Tolerated: Yes
Mechanism: PE App Voter
Configuration | Results

Figure 29 - Application Layer Error Propagation
27

4. Conclusions

Our work on error modeling and propagation analysis with the AADL and the EDICT tool suite has
shown the utility of error modeling and propagation analysis in the design of high reliability systems and
revealed several areas where the modeling and analysis techniques could be improved to play an even
greater role in system analysis. Our work used the AADL to specify the structure of the computing
architecture under analysis and then used EDICT models to augment the structure with models of error
semantics, error transformation, error detection and error mitigation.

Error propagation is useful as an exploratory tool for modeling and evaluating the spread of errors from a
source in the system. The error propagation behavior results can be seen as the interaction and
composition of individual error behaviors of the system components and the connectivity in the system
architecture. This bottom up approach is useful for discovering error propagation paths and combinations
of error events that may occur. It is complementary to top down specifications of expected error behavior
(such as sets of known error states and predefined events that cause state transition) and provides analysts
with views of error coverage from a deterministic perspective. The determinism is brought by the nature
of the propagation analysis; it is independent of error arrival rates or other probabilistic assumptions but is
able to show error effects from all error sources.

Hierarchical modeling and abstraction methods will need to be developed to address the required levels of
complexity in modern systems. The overlapping nature of protocol specifications and the resultant data
flows in the system architecture require that separate views and representations be developed in order to
manage complexity of the models. These models must be composable such that dependencies between
the representations are explicit and can be made consistent. Analysis must be used to verify the
characteristics at an abstraction level and methods must be developed to trace and make consistent
representations at the various levels.

During the course of the work there were several other analysis and modeling features identified that
would facilitate the analysis of dependable architectures. These features focus on the ability to combine
the behavior specifications for a system with the error specifications of the system. Current modeling and
analysis methods are disjoint, often leading to replication of behavior specifications in each of these
aspects. This was found to be true in both the AADL modeling capabilities and in the error modeling
capabilities of the EDICT tools. The following items highlight the areas of concern that we will address as
the project moves forward:

e Enhanced modeling of error mitigator behavior in the presence of multiple failures.
e Enhanced error propagation analysis that considers data flow behavior of the architecture.

e Methods for the representation of protocol behavior and methods to connect the events
discovered through error propagation with protocol behavior and overall system state.

e Tighter integration between system behavior specifications and error behavior specifications.

28

5. References

[1] Torres-Pomales, W., Malekpour, M., and Miner, P., “ROBUS-2: A Fault Tolerant Broadcast
Communication System”, NASA/TM-2005-213540, Langley Research Center, Hampton, VA. March
2005.

[2] Torres-Pomales, W., Malekpour, M., and Miner, P., “Design of the Protocol Processor for the
ROBUS-2 Communication System”, NASA/TM-2005-213934, Langley Research Center, Hampton, VA.
November 2005.

[3] Feiler, P., Glutch, D., Hudak, J., “The Architecture Analysis & Design Language (AADL): An
Introduction”, CMU/SEI-2006-TN-011, February 2006.

[4] Feiler, P., Seibel, J., Wrage, L., “What’s New in V2 of the Architecture Analysis & Design Language
Standard”, CMU/SEI-2010-SR-008, March 2010.

[5] C.J. Walter, and N. Suri, "The Customizable Fault/Error Model for Dependable Distributed Systems,"
Journal of Theoretical Computer Science, Volume 290 , Issue 2 (January 2003).

29

REPORT DOCUMENTATION PAGE onrm Approved

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) |2. REPORT TYPE 3. DATES COVERED (From - To)
01-05-2011 Contractor Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Error Propagation Analysis in the SAE Architecture Analysis and Design |NNL10AB32T
Language (AADL) and the EDICT Tool 5b. GRANT NUMBER
Framework

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
LaValley, Brian W.; Little, Phillip D.; Walter, Chris J.

5e. TASK NUMBER

5f. WORK UNIT NUMBER

534723.02.02.07.30

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

National Aeronautics and Space Administration NASA
Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/CR-2011-217149

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 62

Availability: NASA CASI (443) 757-5802

13, SUPPLEMENTARY NOTES

This report was prepared by WW Technology Group under subcontract to Honeywell International, Inc., Minneapolis, MN,

underNASA contract NNL10AB32T.
Langley Technical Monitor: Paul S. Miner

14. ABSTRACT

This report documents the capabilities of the EDICT tools for error modeling and error propagation analysis when operating
with models defined in the Architecture Analysis & Design Language (AADL). We discuss our experience using the EDICT
error analysis capabilities on a model of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER)
architecture that uses the Reliable Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about
model based design techniques for error modeling and analysis of highly reliable computing architectures.

15. SUBJECT TERMS

AADL, Error Modeling, Error Propagation Analysis, Model-Based Design, SPIDER

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF . .
a. REPORT |b. ABSTRACT |c. THIS PAGE PAGES STI Help Desk (email: help@sti.nasa.gov)
19b. TELEPHONE NUMBER (Include area code)
U U U UuU 35 (443) 757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

