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ABSTRACT 

The Reusable Solid Rocket Motor (RSRM) represents the largest solid rocket motor (SRM) ever 
flown and the only human-rated solid motor. High reliability of the RSRM has been the result of 
challenges addressed and lessons learned. Advancements have resulted by applying attention to process 
control, testing, and postflight through timely and thorough communication in dealing with all issues. A 
structured and disciplined approach was taken to identify and disposition all concerns. Careful 
consideration and application of alternate opinions was embraced. Focus was placed on process control, 
ground test programs, and postflight assessment. Process control is mandatory for an SRM, because an 
acceptance test of the delivered product is not feasible. The RSRM maintained both full-scale and 
subscale test articles, which enabled continuous improvement of design and evaluation of process control 
and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight 
assessment to observe any shift in performance. The postflight analysis and inspections provided 
invaluable reliability data as it enables observation of actual flight performance, most of which would not 
be available if the motors were not recovered. RSRM reusability offered unique opportunities to learn 
about the hardware. NASA is moving forward with the Space Launch System that incorporates propulsion 
systems that takes advantage of the heritage Shuttle and Ares solid motor programs. These unique 
challenges, features of the RSRM, materials and manufacturing issues, and design improvements will be 
discussed in the paper. 

INTRODUCTION 

As of this date, the Space Shuttle Reusable Solid Rocket Motor (RSRM) was the largest diameter 
solid propellant motor used for space flight and the only large solid rocket motor (SRM) certified to launch 
humans into space. The RSRM basically consisted of four propellant-loaded steel case segments 
(forward, forward-center, aft-center, and aft) with a binding liner and thermal protecting insulation, a head 
end igniter system with a safe and arm device, and a multicomponent metal nozzle structure with thermal 
protecting carbon phenolic liners. The propellant mixture consisted of aluminum powder (fuel), ammonium 
perchlorate (oxidizer), iron oxide (burn rate catalyst), epoxy curing agent, and a polymer binder that held 
the mixture together. An assembled motor was 126 ft long, 12 ft in diameter, and contained approximately 
1.1-million lbsm of propellant. At lift-off of the Space Shuttle (Figs. 1 and 2), the two RSRMs provided 6.6-
million lbf thrust—the RSRMs provided 80% of the Space Shuttle lift-off thrust. Figure 3 is a graphical 
depiction of the SRB/RSRM detail.  

The RSRMs burned for 2 minutes completing the Space Shuttle first stage, which ended at Solid 
Rocket Booster (SRB) separation. After separations the SRBs parachuted into the Atlantic and were 
recovered by the two SRB recovery ships. The ships returned the SRBs to the Kennedy Space Center 
(KSC) for disassembly and postflight inspections. All recoverable hardware was then shipped back to 
Alliant Techsystems Inc. (ATK) facilities in Utah to undergo further disassembly, postflight inspection, and 
start the refurbishment process to make other sets of RSRMs. 

The RSRM was designed to make the most use of recoverable hardware. The majority of metal 
hardware was recycled through ATK‘s Clearfield refurbishment plant in Utah and returned to a flight-
qualified conditioned. There were innumerable accomplishments, lessons learned, and cultural changes 
during the Space Shuttle SRM Program; for brevity only a few have been selected to be discussed here.  

 



 

 

  

 

 

 

RESULTS AND DISCUSSION 

RSRM EVOLUTION 

The contract to develop the Space Shuttle SRM was awarded to Thiokol Corporation in 1974. As 
shown in Figure 4, the company evolved throughout the history of the Shuttle Program as various 
mergers, acquisitions, and other name changes occurred between 1982 and 2011.  

Figure 5 is a chronological roadmap showing some of the major qualification tests, design 
changes, process improvements, and operational methodology changes that were incorporated for the 
SRM as it evolved and matured throughout the life of the Shuttle Program.
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 Between July 1977 with the 

firing of Demonstration Motor No. 1 (DM-1), and February 2010 with the firing of Flight Support Motor No. 
17 (FSM-17), 52 static motor tests were successfully conducted at the ATK facilities in Promontory, Utah 
to support the Shuttle Program. A total of seven successful tests (four demonstration and three 
qualification tests) were completed prior to the first Shuttle flight in April 1981. The baseline motor, known 
as the SRM, was flown on the first seven Space Shuttle missions between 1981 and 1983.
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Early evolution of the Space Shuttle vehicle involved a number of performance upgrades, 
including development of the high-performance motor (HPM). In October 1982 and March 1983, static 
test firings (DM-5 and QM-4) were conducted to qualify several enhancements to the baseline motor. 
These enhancements involved increasing the motor chamber pressure, reducing the nozzle throat, 
increasing the nozzle expansion ratio, and modifying the propellant grain-inhibiting pattern to reshape the 
thrust-time history. These enhancements resulted in a 3-s increase in specific impulse and an additional 
3,000 lb (1,360 kg) of payload. The first HPM motors were flown on STS-8 in August 1983. The 
SRM/HPM program included a total of 50 flight motors and 11 static test motors between 1977 and 1986.  

During the early 1980s, the long-range performance improvement plans involved development of 
a graphite/epoxy Filament Wound Case (FWC) to replace the steel case in the HPM design. This 
composite motor case (see Fig. 6) design (developed by Hercules Inc.) reduced the case weight from 

 

Figure 2. STS-135 Last 
Space Shuttle Launch— 

July 8, 2011. 
Figure 1. STS-1 First Space Shuttle 

Launch—April 12, 1981. 



 

 

98,000–69,000 lb (44,500–31,300 kg) resulting in an additional 6,000 lb (2,700 kg) of Space Shuttle 
payload capability. 
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Figure 3. SRB/SRM Detail. 
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Two full-scale static tests, DM-6 and DM-7, were conducted in October 1984 and May 1985. A 
full-scale FWC Qualification Motor (QM-5) was assembled and ready to fire when the Challenger accident 
occurred. At that time, the first FWC flight motors were stacked and ready to support a July 1986 launch 
at the Vandenburg launch site in California. The FWC development and the plans to launch the Space 
Shuttle out of Vandenburg were subsequently abandoned. 

Figure 6. DM-7. 

 

Figure 5. RSRM Evolution. 



 

 

Following the Challenger accident, a redesigned SRM (the RSRM, first known as the 
―redesigned‖ SRM, but later as the ―reusable‖ SRM) was developed and qualified between the spring of 
1986 and the summer of 1988 in one of the most intense engineering efforts ever. During this period, 
extensive subscale and full-scale tests were conducted to 
verify the cause of the Challenger accident and qualify the 
necessary design changes. Six static tests were conducted 
(Engineering Test Motor No. 1A, Demonstration Motors Nos. 
8 and 9, Qualification Motors Nos. 6 and 7, and Production 
Verification Motor No. 1 (PVM-1)) including tests at hot and 
cold specification bounds with side loads applied to simulate 
those induced by the external tank attachments. PVM-1, the 
final static test prior to return to flight, was a full-scale flaw 
test motor to verify the redundant features of critical seals. 
The first flight of the redesigned booster occurred on STS-26 
in September 1988 (Fig. 7). The key changes between the 
HPM and RSRM designs (Figs. 8–10) include (1) improved 
case metal hardware with a capture feature and third o-ring, 
(2) improved field joint thermal protection with a rubber J-leg 
replacing the putty, (3) added field joint heaters to ensure o-
rings can track dynamic motions even under cold ambient 
conditions, (4) improved ply angles in nozzle phenolic rings 
to preclude anomalous pocketing erosion, (5) more robust 
metal housings in the nozzle to increase structural margins 
and accommodate dual and redundant o-ring seals, and (6) 
an improved nozzle-to-case joint that added 100 radial bolts 
to reduce the dynamic joint motion plus the addition of a 
bonded insulation flap with a wiper o-ring in place of the putty thermal barrier (years later the adhesive 
was removed and replaced with an insulation j-leg with pressure sensitive adhesive (PSA) and a carbon 
fiber rope thermal barrier).  

 

 

 

Figure 8. Field Joint Comparison. 

 

Figure 7. STS-26 Post-Challenger. 
Launch. 

 



 

 

 

 

 

 

Shortly after return-to-flight, an insulation J-leg thermal barrier was developed for the igniter inner 
and outer joints (Fig. 10). 

Figure 10. HPM and RSRM Return-to-Flight Joint Design. 

 

Figure 9. RSRM Nozzle. 

 



 

 

 

 

After the Challenger accident, NASA and ATK worked on improving their relationship and the way 
they were doing business together. The focus became working as a team with emphasis on 
communication, safety and technical excellence. As a result, NASA and ATK continued to make many 
RSRM improvements throughout the remainder of the Shuttle Program. Notable improvements to RSRM 
manufacturing processes, plant operating methodology, and risk management systems include (1) a 
rigorous postfire evaluation of flown and tested hardware, (2) continuous facility improvements including: 
a new nozzle bond facility, an advanced static test facility, a new x-ray facility, a new propellant pre-mix 
facility, a new ultrasonic gantry system, a new automated eddy current inspection system for metal 
hardware, the switch from x-ray film to digital x-ray, the incorporation of humidity control in the insulation 
facility, the elimination of trichloroethane (TCA), also known as methyl chloroform, vapor degreasers due 
to the incorporation of greaseless case segment shipping containers, and a dedicated final assembly 
building, (3)  the use of witness panels for critical manufacturing processes, (4) the use of trending and 
statistical process control,  (5) the use of Process/Product Integrity Audits and NASA Engineering and 
Quality Audits, (6) the use of Process Failure Modes and Affects Analysis (7) the transition from paper 
manufacturing planning instructions to paperless Electronic Shop Floor Instructions, (8) the incorporation 
of chemical fingerprinting to identify constituent anomalies of critical RSRM materials before their use on 
RSRM hardware, (9) the adoption of the Toyota Production System, known at ATK as the Performance 
Enterprise System, as a way of operating the ATK manufacturing facilities, and (10) the use of Process 
System Design.  

Many changes to the RSRM design were made after the Challenger accident to improve the 
safety and reliability of the motors. These changes were mainly driven by anomalous postfire 
observations, material obsolescence issues, and desired margin enhancements, In addition to those 
design changes identified above that were made as a result of the Challenger accident, some of the most 
notable design changes include: (1) the addition of silane primer, enhanced bond surface preparations, 
and improved assembly processes on nozzle liner bonds, (2) an improved room temperature vulcanized 
(RTV) thermal barrier excavation and backfill process in nozzle joints, (3) the replacement of the nozzle 
liner-to-housing adhesive with a new and improved adhesive, (4) the use of carbon fiber rope as a 
thermal barrier in nozzle joints No. 2 and 5, and the nozzle-to-case joint, (5) the use of North American 
Rayon Corporation (NARC) material carbonized at higher furnace temperatures to mitigate pocketing 
erosion in the nozzle throat (6) the redesign of the propellant fin transition region, (7) the removal of the 
inactive stiffener stub, (8) the use of intelligent pressure transducers (IPTs) to more accurately measure 
the motor ignition transient and pressure oscillations during motor operation, (9) the redesign of the field 

Figure 11. HPM and RSRM Igniter Comparison. 

 



 

 

joint protection system to improve processing timelines at KSC, (10) the switch from United Technologies 
Corporation, Chemical Systems Division (CSD) manufactured booster separation motors (BSMs) to ATK 
manufactured BSMs, (11) the change to improved resiliency o-rings in the field joints, nozzle joints, the 
BSM, and the igniter and Safe and Arm (S&A) gaskets, and (12)  the use of reformulated ethylene 
propylene diene monomer rubber (EPDM) in the factory joint weather seal and the carbon fiber EPDM of 
the aft dome. 

The majority of changes made to the RSRM were due to material obsolescence. For example, 
during a 10-year period beginning in the mid-1990s, more than 100 RSRM materials became obsolete. 
The largest contributing factor for why suppliers changed their materials stemmed from economics and 
the desire to reduce costs and can be captured in three main scenarios. First, suppliers changed their 
own materials and processes. Second, suppliers consolidated operations and either discontinued or 
otherwise modified their materials. Third, the product constituent materials were simply no longer 
available from subtier vendors.  

The need for compliance with US environmental regulations was another reason why some 
changes were made to the RSRM. For example, Environmental Protection Agency (EPA) regulations 
require the phase-out of ozone depleting compounds. NASA and ATK worked closely with the EPA to 
develop a strategy and timeline for eliminating the use of methyl chloroform as hardware cleaning method 
in the RSRM manufacturing process. Through extensive full-scale and sub-scale testing, new 
replacement materials were selected for hand cleaning and Conoco HD2 grease was eliminated as the 
acreage corrosion preventer for steel case segment hardware. By the time the Shuttle Program ended, 
most methyl chloroform usage had been eliminated except for that used for rubber activation during case 
insulation layup, flex bearing manufacture, field joint cleaning and pressure sensitive adhesive production. 
The yearly usage of methyl chloroform had dropped from the 635 metric tons (1.4-million lb) used in 1989 
to approximately 4 metric tons (8800 lb) at the end of the program. 

The following brief summaries are examples of five significant and technically challenging 
projects that occurred during the life of the RSRM program. 

INSULATION J-LEG  

The Presidential Commission on the Space Shuttle Challenger Accident concluded that the cause 
of the Challenger accident was the failure of the pressure seal in the aft field joint of the right SRB. The 
failure was due to a faulty design unacceptably sensitive to a number of factors. These factors were the 
effects of temperature, physical dimensions; character of materials; effects of reusability; processing; and 
the reaction of the joint to dynamic loading. One poor design characteristic leading to the cause of the 
accident was that the zinc chromate putty used between the mating tang and clevis field joint insulation 
was susceptible to the creation of gas paths and blow holes during segment stacking at KSC. During 
motor operation, these gas paths allowed hot gas and pressure to penetrate the joint setting up a 
condition for continuous high temperature gas flow which in turn eroded through the o-rings and allowed 
the gas to escape through the joint. The redesign team was faced with the challenge of coming up with a 
new design that solved this issue. The team considered several options, including an option that would 
allow the rapid pressurization of an open joint at motor ignition that would prevent the continuous gas flow 
through the putty experienced by the failed motor on Challenger. The team decided on a design solution 
that would attempt to totally stop the flow of gas into the joint. The selected design (Fig.8) added a J-leg 
to the tang-side insulation with matching clevis side insulation and included pressure sensitive adhesive 
to act as a sealing and bonding agent for the mating surface.

3
 Figure 12 shows how the pressure-assisted 

insulation J-leg works.  

At ignition, motor gas enters the J-leg slot and with the aid of the pressure sensitive adhesive the 
J-leg tracks the clevis insulation keeping hot gas away from the downstream o-rings. This design was first 
used on RSRM-1 (STS-26R). Although it was considered a thermal barrier and not a seal, this design 
proved to be very successful, and except for the RSRM-55 (STS-78) special cause, never allowed gas 
into the joint. RSRM-55 used a new water-based PSA whose properties were adversely affected by the 
high humidity conditions during application at KSC; the fix was to switch back to the previously used 



 

 

methyl chloroform based PSA. The successful performance of the J-leg in the field joint eventually led to 
the incorporation of this design feature into the igniter inner and outer joints, and the nozzle-to-case joint. 

 

 

 
Figure 12. Pressure-Assisted Insulation J-leg. 

IMPROVED RESILIENCY O-RINGS AND GASKETS 

Brought to the forefront of major HPM design deficiencies by the findings from the Challenger 
accident investigation, an important aspect of proper field joint fluorocarbon o-ring performance is the 
ability to track the joint movement, or gap opening, experienced at motor ignition while still preventing 
leakage past the o-ring. This ability of a compressed o-ring to track joint motion is known as o-ring 
resiliency. Warm o-rings have better resiliency performance than cold o-rings. Thus, cold o-rings do not 
track joint motion as well as warm o-rings. Because of this fact, field joint heaters were added to the 
RSRM. Also added to the joint redesign were structural features intended to minimize the gap opening or 
maximum expected deflection (MED). Although the reduction in MED and incorporation of joint heaters 
did mitigate the known deficiency in tracking capability of the o-rings, the search for a better seal material 
continued throughout the RSRM program. After the Challenger accident and subsequent HPM redesign, 
a report issued by the National Research Council reviewed the RSRM and concluded that the joint heater 
power cables were a potential safety hazard and that ways should be pursued to remove them if possible. 
Thus, various test programs were undertaken over the years to evaluate potential replacement seal 
materials with the goal of better performance to enable the removal of the joint heaters. 

An improved GLT (good low temperature) fluorocarbon material known as Compound 17A had 
been developed for the Advanced Solid Rocket Motor (ASRM) program and evaluation testing was 
performed for the RSRM application. Although the material was shown to have good performance, it was 
found that there were significant problems in the material fabrication. Issues with splicing and grinding 
meant that fabricating o-rings would be extremely difficult so the effort was abandoned. 

Later, ATK internal R&D developed an improved fluorocarbon compound designated RDL5503. 
Development testing of this material was pursued, along with an improved GLT compound (LV1183). The 
RDL5503 was shown to be superior to the LV1183 material and was selected to be demonstrated on 
ETM-2. Full-scale assembly tests were performed in preparation for the static test demonstration. 
Although the RDL5503 material performed extremely well with significantly improved low-temperature 
capability, it was found that some of the constituent ingredients were corrosive and the o-ring 
manufacturer, Parker, declined to fabricate o-rings on a production basis due to the environmental and 
operator safety concerns, so this effort was also abandoned. 

Late in the RSRM program, another effort was begun with a comprehensive industry search for a 
replacement seal material. Five likely candidate materials were evaluated, with three showing promise for 
further consideration. Parker made an attempt at slightly modifying the formulas of these three 
compounds to find an optimized balance of desired resiliency performance and material toughness and 
strength. When the results did not meet the goals of the program, a design of experiment matrix was 
developed by ATK to understand the effects of varying some of the key constituent ingredients on the 
final performance and properties of one of the materials, LV1248. Based on the results of this study of 20 



 

 

mini-mixes, the ratios for optimum performance were specified and resulted in the creation of the V1288 
compound. Verification testing was performed to demonstrate that the final V1288 material performed as 
advertized and as designed, which it did. Physical properties, damage resistance, ablation resistance, 
resiliency, and dynamic pressure testing were performed and the material met all of the physical 
properties and thermal/ablation resistance characteristics of the RSRM baseline V1247 o-rings, but 
demonstrated equal tracking performance at temperatures approximately 40 °F lower than V1247. 
Splicing of V1288 o-rings required adhesive made from the old V1247 compound since the new material 
did not solvate very well, but testing showed that the new splice system (V1247 adhesive on V1288 o-
rings) produced sufficient tensile strength and did not adversely impact the resiliency performance at the 
location of the splice. Testing of repairs was also performed. Full-size o-rings were fabricated from V1288 
compound and were demonstrated on full-scale static test motors, FSM-12 and FSM-13, with flaws in the 
forward field joint to allow hot gas impingement on the V1288 capture feature o-ring for an assessment of 
its ablation resistance. A comprehensive qualification test program was followed to fully certify the new o-
rings. The lab-scale batches of rubber used for the majority of the development and certification program 
were scaled up to a production-size mix process and demonstrated to be equivalent to the previous lab 
batches. V1288 o-rings were implemented in the RSRM field joints beginning with RSRM-105, and 
continued with the nozzle-to-case joint for RSRM-107. Nozzle internal joint implementation was staggered 
over several flights as remaining inventories of V1247 o-rings allowed. Although the elimination of joint 
heaters was now possible, a decision was made to keep the heater system. A reduction in the 
contingency LCC temperature was approved and significantly higher operating margins were achieved for 
all of the dynamic joints. Late in the program, V1288 material was also incorporated into the igniter inner 
and outer gaskets, the S&A gaskets, and the ATK BSM.  

ETM-3 FIVE SEGMENT MARGIN TEST 

In the late 1990s, ATK approached NASA with a Five Segment Booster concept that offered 
several benefits over the RSRM. The new motor used standard, ―off-the-shelf‖ technology and was the 
same as the RSRM with the following changes: (1) added center segment, (2) new nozzle with larger 
nozzle throat, (3) thrust attach point in forward segment instead of forward skirt, (4) shorter, simpler 
forward skirt, (5) reduced burn rate propellant.  

The added performance of a five-segment motor would enable a number of significant safety 
improvements. For example, the return to launch site and transatlantic landing abort modes could be 
eliminated. Abort to orbit could be achieved with a five-segment booster even if one of the Space Shuttle 
main engines had to be shut down on the launch pad. The Space Shuttle could increase payload 
delivered to Space Station Alpha to 40,000 lb (18,000 kg). Or, this added performance could be used to 
enable orbiter upgrades that add inert weight, e.g., a crew escape module. 

ATK proposed that a full-scale static test be performed to help the understanding of internal gas 
dynamics in support of a future Five Segment Booster design. The results of the Five-Segment Booster 
Phase A study were presented to the managers of the Space Shuttle Program in December of 2000. 
Based on projected program needs and the costs of implementing a Five Segment Booster, NASA chose 
to not pursue the Five Segment Booster for the Shuttle Program. However, the Shuttle managers 
recognized there were potential benefits to the Shuttle Program by testing an Engineering Test Motor 
(ETM-3). Because the five- segment motor produced a harsher environment than the four-segment 
RSRM, the test would provide important insight into performance margins of the RSRM. Conditions more 
severe than RSRM included: the thermal environment, structural loads, potential for detrimental erosive 
burning, enhanced acoustic activity, more slag generation, longer burn time, higher mass flow and Mach 
number, higher operating pressure and pressure drop down the motor, higher buckling and joint loading, 
and a higher fill volume and longer length propellant surface for ignition. The test also offered a unique 
challenge to the NASA and ATK engineers. From scratch, the team would have the design, build and test 
a new motor in roughly two years. Since it had been over two decades since the original Shuttle SRM had 
been designed and tested, it was an opportunity for the NASA and ATK engineers to be involved in a new 
design where they could sharpen their analytical skills and learn from the experience, which would be a 
benefit to the ongoing Shuttle Program and to future programs using SRMs. The go-ahead for execution 
of the ETM-3 test was given in February 2001. 



 

 

 

 

ETM-3 (Fig. 14) included the following changes from the RSRM four-segment motor design: 1) 
added center segment (added 273,000 lb of propellant over the RSRM), 2) bored out nozzle throat, 3) 
reduced burn rate propellant, 4) extended aft exit cone, 5) added chamfer to propellant leading edges, 6) 
modified center segment rubber inhibitor heights, and 7) modified center and aft segment insulation 
design. ETM-3 was instrumented with 620 gauges and a total of 635 channels. 

 

 

ETM-3 was successfully tested in test stand T-97 of the ATK plant in Promontory, Utah on 
October 23, 2003. Examples of innovations developed specifically for, or as a result of ETM-3, include: 
advanced coupled fluid structural interaction analysis that shortens run time from weeks or months to 
overnight, nozzle in-depth thermocouples, aft dome insulation in-depth thermocouples, field joint j-leg slot 
pressure transducers, erosive burning subscale test simulator and associated improved modeling 
techniques, and direct measurement of pressure and heat flux inside a motor chamber. 

ETM-3 demonstrated that the RSRM had robust margins. It was a great learning experience for 
the NASA/ATK workforce. And, it was a great step toward development of a future five-segment motor.  

Figure 14. ETM-3 Modifications from RSRM. 

 

Figure 13. ETM-3 Static Test, October 23, 2003. 

 



 

 

CARBON FIBER ROPE 

Early RSRM nozzle joints 1-5 were designed with a room temperature vulcanized (RTV) thermal 
barrier to protect o-ring seals during motor operation. The nozzle-to-case joint used polysulfide adhesive 
as a thermal barrier to protect the seals. As the RSRM flight history grew, frequent and undesirable gas 
paths, blow holes, voids, and tail voids through the thermal barriers were seen during postflight 
inspection. When o-ring erosion was seen on joint 3 of the RSRM-44 (STS-70) and RSRM-45 (STS-71) 
nozzles, an RTV excavation and backfill process was developed for joints 3 and 4 as a corrective action. 
This fix proved to be very successful for those particular joints, and no further o-ring anomalies occurred 
throughout the remainder of the RSRM program. A joint 1 carbon fiber rope design was created and 
some development work was performed, but since it had a less severe operating environment than other 
joints, the condition was not a challenge to flight safety and a design change was never incorporated for 
RSRM. Although no significant o-ring erosion occurred on the other joints as the program progressed, 
flow paths through the thermal barriers persisted and the subject continued to be a frequent topic of 
discussion at Shuttle pre-launch flight readiness reviews.  

 

  

In the late 1990s researchers at the NASA Glenn Research Center (GRC) were experimenting 
with braided carbon fiber rope and discovered that it had the ability to remove most of the thermal energy 
from a high temperature gas that passed through it without much noticeable damage after several 
minutes of exposure. The rope is very permeable and the high heat capacity of the carbon fibers allows 
for the efficient removal of heat (Fig.15).  

ATK, seeking a design solution that would eliminate gas paths through thermal barriers, 
collaborated with GRC on the development of a carbon fiber rope configuration that could be used in 
RSRM applications. The final rope design consisted of a carbon fiber center core surrounded by ten 
sheaths of braided carbon fiber (Fig. 16). 

Figure 15. Carbon Fiber Rope Function. 

 

 



 

 

 

 

ATK and NASA developed nozzle design solutions for these thermal barrier gas paths that 
utilized the heat dissipating qualities of the carbon fiber rope (Figs. 17, 18, and 19).  

The nozzle joint 2 and 5 designs eliminated the RTV thermal barriers (open volume allowed gas 
to fully pressurize the joint at ignition) and placed carbon fiber ropes upstream of the o-ring seals, cooling 
the hot combustion gases that passed through them to temperatures close to ambient. As an example of 
how well the new designs performed, photos of the typical joint 2 condition before and after incorporation 
of the carbon fiber rope design is shown in Figure 20. The nozzle-to-case joint design incorporated an 
insulation j-leg thermal barrier and downstream carbon fiber rope ahead of the o-ring seals that protected 
them from high temperature exposure in case the J-leg leaked. All incorporated carbon fiber rope designs 
eliminated thermal barrier gas paths and performed flawlessly after their incorporation on flight hardware. 

ATK BOOSTER SEPARATION MOTOR (BSM) 

The original shuttle BSM was designed by United Technologies Corporation, Chemical Systems 
Division (CSD). This design flew on the first 120 Shuttle missions. In October 2003, ATK received an 
alternate source contract to develop BSMs with selected design and processing upgrades to further 
enhance motor reliability. The ATK design was heavily based on the CSD design with specific 
enhancements based on RSRM design practices and modern analytical approaches. The ignition system 
was completely redesigned to address lessons learned from an investigation of erratic ignition pressures 
conducted by CSD, ATK, and NASA. Other components of the motor remained essentially unchanged 
from the CSD design with minor adjustments made to address obsolescence concerns and lessons 
learned during the baseline flight program. Improvements introduced with the ATK BSM (Fig. 22) 
included: (1) ATK manufactured only one motor configuration (at KSC, United Space Alliance performed 
the necessary BSM closeout depending on whether the BSM was mounted in the forward or aft position), 
(2) sling lined chamber (CSD was hand applied), (3) ATK BSMs were cast in batches of four motors 
rather than the 64 by CSD, (4) the design used a new stronger adhesive (TIGA), (5) redesigned graphite 
throat with improved margins, (6) interchangeable case and aft closures eliminated matched sets (7) 
incorporated new better resiliency low temperature o-rings, (8) increased o-ring squeeze, (9) added an 
igniter-to-case leak check port, and (10) redesigned igniter. During the development program for the ATK 
designed BSMs, CSD announced closure of the San Jose, CA facility that produced BSMs. This 
revelation led NASA to a sole source contract with ATK to manufacture the BSMs and eventually to the 

Figure 16. Carbon Fiber Rope. 

 



 

 

first flight of ATK BSMs in the forward position on STS-122 and in all positions on STS-126. All ATK 
BSMs exhibited excellent performance through the end of the Shuttle Program. 

 

 

 

 

 

Figure 18. Nozzle Joint 5. 

 

Figure 17. Nozzle Joint 2. 

 



 

 

 

 

 

 

 

 

Figure 20. Joint 2 RTV and Carbon Fiber Rope Design Comparison. 

 

Figure 19. Nozzle-to-Case joint. 

 



 

 

 

 

RSRM—HIGHLIGHTED LESSONS LEARNED 

NOZZLE POCKETING 

During the eighth Space Shuttle flight (STS-8), the carbon cloth phenolic (CCP) ablative rings on 
the forward nose of one of the nozzles (Fig. 22) exhibited a severe rate of material loss referred to as 
―Pocketing.‖

4
 The ablative rings form the contour of the nozzle and protect the underlying metal structure 

from the super-hot exhaust gases. At the end of a nominal motor burn (123 s), there is usually enough 
material remaining to fire the nozzle a second time. However, the erosion rate on STS-8 was so great that 
only 8 s of ablative material remained. When carbon/phenolic plies are incorrectly oriented to the flow 
surface, stresses can exceed the hot charred material strength resulting in anomalous erosion.  

 

 

Figure 22. Nozzle Pocketing.  

 

Figure 21. The ATK BSM. 

 



 

 

Before the Challenger accident, in both flights and static firings, there had been eight pocketing 
events in 66 nozzles at the nose inlet and one pocketing event in 66 nozzles at the nozzle throat. The 
problem of pocketing at the nose inlet was completely eliminated with the ply angle change that occurred 
with the first RSRM flight. Over the next 9-plus years there were zero pocketing events on 170 nozzles. 
On the RSRM 56B nozzle (Sep. 96), both the RSRM 49A and RSRM 49B nozzles (Nov. 96), and the 
RSRM 57B nozzle (Aug. 97) throat ring nozzle pocketing returned with accompanying downstream 
erosion. Because of this problem, a significant effort to understand the nozzle pocketing began. This 
effort, which involved a widespread technical community, was referred to as an enhanced sustaining 
engineering (ESE) effort; fault tree methodology was used to understand the pocketing mechanism. Over 
a 24-month period there were 6,300 mechanical, thermal, and physical property tests conducted. There 
were 1,650 PTTB tests, 1660 LHMEL (Laser Hardened Material Evaluation Lab) tests, 43 subscale tests, 
dissections of eight full-scale motor nozzles, seven scrapped nozzles and wrap, and cure and dissection 
of 11 full-scale instrumented tests.  

Though that extensive effort it was determined that: 

• Pocketing occurs at high char layer temperature >2,500 °F 

• Pocketing requires fiber reinforcement failure 

• Pocketing is sensitive to surface ply angle 

• Ply distortion occurs in throat billets that can result in a higher angle ply region at the flame 
surface 

• Some CCP has a higher propensity to pocket 

• Production CCP material varies greatly in pocketing propensity at 90 °F 

It was also determined that the pocket propensity variables were: 

• Fabric carbonization temperature 

• Fabric carbonization rate 

• Scouring of white fabric 

Because of these studies, changes were made and the following ten flights and two static motors 
had zero pocketing issues. In May 2001, FSM-9 experienced multiple pockets (with a maximum depth of 
0.38 inch) and downstream wash erosion. A review of all relative variables identified in the ESE effort 
showed everything within family. However, the carbonization temperature may have been on the lower 
end of family. A change to target a higher (but in family) carbonization temperature was made. After this 
change, there were no occurrences of pocketing at the throat.  

RSRM INSULATION J-LEG DESIGN 

Several instances of o-ring erosion and blow-by occurred in the primary seal locations of the field 
joints and nozzle-to-case joint on pre-RSRM motors between 1977 and 1986. The design used putty 
between the motor segments as a thermal barrier to protect the o-rings. Occasional voids in the putty 
would channel hot gas jets that would vaporize the surface of the rubber o-ring material. During case 
pressurization at ignition, the joints would move such that the o-ring would lose contact with the metal 
parts, and hot gas would leak or ―blow by‖ the seal. The ability of the o-ring to track this dynamic motion is 
significantly degraded at low temperatures. Engineers understood that the primary seal could fail, but 
were convinced that the secondary seal would hold. Both the primary and secondary seals failed when 
Challenger was launched on a cold day in January 1986.  

PRIMARY SEAL AND THERMAL BARRIER ENHANCEMENT (1986)  

Pressure-sensitive adhesive bonded rubber insulation ―J-leg‖ and a ―capture feature o-ring‖ were 
developed to provide field joint thermal protection. A polysulfide bonded flap and ―wiper o-ring‖ were 
developed as the thermal protection system for the nozzle-to-case joint. A ―capture feature,‖ radial bolts, 



 

 

and joint heaters were added to the respective joints to ensure the ability of the o-ring to track any 

dynamic motion with a 2  margin. See Fig. 11 for a comparison of the HPM and RSRM designs and a 
description of the items listed above. Since these features were added, not one of the primary o-rings on 
the RSRM field joints or nozzle-to-case joints has been pressurized (over 700 total joints flown or tested).  

Thermal barriers made from putty can focus hot gas jets that will damage the elastomeric seal. 
The seals must be able to track dynamic motion of metal components at operational temperatures.  

STS-78 FIELD JOINT GAS PENETRATION EVENT 

The space shuttle RSRM uses an internal insulation ―J-joint‖ design for the mated insulation 
interface between two assembled RSRM segments. In this assembled (mated) segment configuration, 
this J-joint design serves as a thermal barrier to prevent hot gases from affecting the case field joint metal 
surfaces and o-rings. A Pressure Sensitive Adhesive (PSA) provides some adhesion between the two 
mated insulation surfaces. In 1995, after extensive testing, including a successful test on Flight Support 
Motor (FSM)-5 (full scale RSRM static test), new Ozone Depleting Chemicals (ODC)-free PSA was 
selected for flight on STS-78, which was launched on June 20, 1996. Postflight evaluation of the case 
field joints at KSC on July 1, 1996 revealed hot gas penetration into all the field joints on both motors past 
the J-leg insulation tip. Although not a flight safety threat, the J-joint hot gas intrusion on STS-78 was 
puzzling to the investigators since the PSA had previously worked well on the FSM-5 full-scale static test.  

A team was assembled to thoroughly study the J-joint and PSA further. All J-joint design 
parameters, measured data, and historical performance data were re-reviewed and evaluated by 
subscale testing and analysis. Although both the ODC-free and baseline PSA were weakened by 
humidity, the initial ODC-free PSA strength was significantly lower. The gas penetration event was 
intentionally duplicated in subscale tests and on FSM-7 and FSM-8 full-scale static tests. Because the 
next Space Shuttle (STS-79) hardware was also stacked with the same new PSA, the decision was made 
to destack and replace the PSA.  

The root cause of the RSRM-55 J-joint insulation gas penetration leakage was the ODC-free 
PSA. This change, in conjunction with the significant joint deflection at ignition (highest occurrence in 
center and aft field joints) and extended high humidity conditions at the launch site in Florida (not present 
in Utah on FSM-5), resulted in a PSA strength reduction significant enough to allow the J-leg to separate 
from the clevis insulation a few seconds into motor operation. A significant amount of testing confirms that 
all three of the following conditions must exist simultaneous to cause the J-joint leakage:  

1. New ODC-free PSA in the joint  

2. Joint exposed to a history of high humidity (KSC levels)  

3. A joint that experiences significant but normal joint motion 

Post-test FSM-8 inspections revealed very similar charring characteristics as observed on RSRM-
55.  

Internal instrumentation capable of obtaining real-time internal motor data was developed on 
several static tests. This static test instrumentation was used on the FSM-8 joint simulating RSRM-55 
environments and proved that key parts of this theory are correct:  

1. ODC-free PSA degraded by humidity undergoing normal joint rotation caused the RSRM-55 
joint leakage 

2. Leakage occurred early in motor operation  

  

RSRM TEST PROGRAM 

 
One major advantage liquid engines have as compared to any SRM is the ability to test the flight 

unit, the liquid systems people refer to this as a ―Green-Run.‖  If an SRM flight unit was tested, the 
propellant and insulators would be spent and require complete refurbishment including replacement of the 



 

 

insulators and propellant, it would in effect no longer be the original flight unit, but rather a different unit 
with some less known reliability—SRMs cannot be green-run. The required high reliability of the Space 
Shuttle RSRM had to be attained by other methods. This included the constant vigilance and focus on all 
the necessary elements of RSRM flight safety (Fig. 23).

5
 One of these key elements was an intensive test 

program that included multiple levels of subscale and full-scale testing. 

Subscale testing covers the entire spectrum of tests that range from the dog-bone type tensile 
tests of propellant batches, witness panel peel and tensile testing of insulator materials that follow all flight 
hardware processes to small scale motor tests that include a 5-inch diameter Center Bore (5-in. CP) used 
to get propellant burn rate, and larger motor tests like the 70-lb char motor to evaluate insulation 
performance, the 24-inch diameter Solid Rocket Test Motor (SRTM) used to screen design or material 
change concepts and the 48-inch diameter MNASA Modified NASA Motor (MNASA) used for further 
screening and to check expected performance on a motor that closely resembles the RSRM (Fig. 24). 
The highest level test is the full-scale Flight Support Motor (FSM), a true replicate of the RSRM flight 
motor, but very highly instrumented to collect as much data as possible. As you might expect, these full-
scale motors are very expensive and time consuming tests, we were only able to tests about one FSM 
per year on the RSRM program. The main purpose of the FSM changed somewhat from its original 
concept. Originally an FSM was going to be a flight unit taken off the line and tested to totally represent 
the other units being manufactured during the same time period. The FSM necessarily evolved to being 
the ―Change Precursor‖—many of the required changes on the RSRM Program (mostly obsolescence 
driven) required tests on full-scale static motors prior to flight. Our desire was to test all changes on static 
tests before flight. Part of the NASA culture to ―test what you fly, fly what you test‖ was a derivative of the 
RSRM Program. It is this attention to testing coupled with an intensive post-fire inspection and intensive 
postflight inspection of all flight hardware and particular attention to process control makes up for the 
inability to green-run the RSRM.  

 

 

 

Figure 23. RSRM Overview. 

 



 

 

 

 

RSRM POSTFLIGHT INSPECTIONS 

 
Another key element of maintaining RSRM flight safety was the amount of emphasis placed on 

postflight/postfire inspections.
6
 The rigor and detail applied to RSRM inspections is unique to the SRM 

industry. It was rather fortunate on the Space Shuttle Program for the decision to recover the SRBs after 
each Space Shuttle launch and refurbish the hardware to maximize reusability. The decision to recover 
the hardware permitted a detailed assessment of the hardware during the disassembly process. At the 
completion of first stage of a Space Shuttle Launch, the SRB separate from the vehicle and parachute 
down and land in the Atlantic Ocean about 100 miles off-shore from the launch site. The SRBs are 
retrieved by the Booster Recovery Ships, Liberty Star and Freedom Star. The ships‘ crews recover the 
SRBs and return them to KSC for safing, disassembly, and to undergo postflight inspection. For each 
Space Shuttle launch we send a crew of RSRM Design Engineers, Manufacturing Engineers, and Quality 
Engineers responsible for the hardware both from ATK Utah and from Marshall Space Flight Center to 
inspect and evaluate the performance of the hardware during hardware disassembly and document 
hardware condition (Fig. 25). Any unusual or unexpected conditions are given special attention and all 
require disposition prior to the next Space Shuttle Launch. There was a disciplined approach for 
identifying, evaluating, and dispositioning any In-Flight Anomalies (IFAs) or any reportable conditions. 
Even small performance differences are noted and require disposition. The same types of inspections are 
performed after an RSRM Flight Support Motor (FSM) static test fire with the same rigor applied. Any first 
flight or first test engineering changes are noted in a special issues document for the postflight/post-fire 
inspectors‘ review prior to performing inspections. The performance of the hardware relative to any 
engineering change made was always thoroughly evaluated and documented. At the time of this print, no 
other SRMs, current or previous, had this degree of detailed postflight inspection. 

 

Figure 24. RSRM Testing. 

 



 

 

 

 

 

SEVEN ELEMENTS OF GOOD FLIGHT RATIONALE 

 

After the Challenger accident the RSRM Program developed an improved approach for the 
thorough evaluation of all significant issues and developed an improved way to communicate how these 
issues were dispositioned. From STS-26 (return-to-flight post-Challenger) through STS-135 (last flight of 
the Shuttle Program) the RSRM Program was known throughout the NASA and the contractor team as 
the Program that ‗‖pounded the issues flat.‖  After Columbia accident we formally documented the 
approach we used to evaluate issues and shared this approach with all elements of the Space Shuttle 
and later to other areas of NASA and many of the support contractors and then to others throughout the 
aerospace industry. We termed this approach the ―Seven Elements of Good Flight Rationale.‖  The 
purpose of the approach was to create a consistent methodical process to discuss the basis of flight 
safety of significant issues being worked. The approach helped indentify strengths and weaknesses in 
flight rationale and provided a good tool for communicating all of the risk. Historically, flight rationale 
highlighted only the strong points; weaknesses were not thoroughly communicated and may not have 
been totally understood by managers responsible for accepting risk. Once weaknesses are identified, 
mitigating actions can be assigned to improve the posture, if improvement is required to get to acceptable 
or improved flight rationale—this approach can be used as a tool to identify was needs to be done to 
improve flight rationale. The objective of the approach is to understand the risks, mitigate risk as much as 
possible, communicate all around about the risks remaining, and then decide if we can accept the risk. 

Figure 25. RSRM Postflight. 



 

 

The initial part of this is identifying significant issues that affect system risk. Once the issue is identified 
and understood, decide how this issue can possibly keep you from meeting your objectives, e.g., part can 
break, component or system can fail to perform as desired, program goal may not be met. The next step 
is to define the risks that need to be assessed, e.g., risk of an event or consequence of an event, does 
the risk affect flight safety, mission success, cost, schedule, supportability. A Failure Modes and Effects 
Analysis (FMEA) approach is a good way to define the risk by defining what can prevent objectives from 
being met. For each issue, a well-defined risk problem statement should be developed to keep the focus 
on what you are trying to mitigate. Then the issue should be evaluated against the Seven Elements. The 
Seven Elements of Good Flight Rationale are as follows: 

(1) Solid technical understanding – Do we know how/why this condition occurred?  Was it 
impact, expired shelf life, moisture loss, residual stress, etc.?  Did we use a fault tree? Do we understand 
the extent of the crack, high density indication (HDI), damage, foreign object debris (FOD), etc.? Do we 
know what the foreign material is? What are the plausible contaminants and how could they be harmful? 
Do we understand how/why components with similar indications performed the way they did? Is there a 
fix/repair for this unit/article? Do we understand the repair process/condition? Are the generic design and 
process robust and in control? 

(2) Condition relative to experience base – Have we dealt with this problem before? How is this 
the same? How is it different? Do we have flight or test history with this defect? With this repair? Other 
programs? How are we the same? Are we different? Was the similar feature actually exercised in a test? 
What was the outcome? 

(3) Bounding case established – What bounding scenarios (test, analysis, etc.) have been 
evaluated in the attempt to bound or envelope the issue? e.g., upper 3-sigma loads, lower A basis 
allowables, a specific worse hardware condition? What assumptions were made? Where are they 
conservative? Where are they not conservative? Were all the failure modes addressed? Have we 
assessed the ―what if we‘re wrong‖ scenarios? 

(4) Self limiting aspects –Physical reasons why the defect or condition will not get worse than 
current state or degrade. How can the condition exceed the bounding case? Is the system failsafe or 
fault/failure tolerant?  Are there built in redundancies if the feature does fail? 

(5) Margins understood - What are the predicted margins for the discrepant or repaired part? 
Have they changed from baseline? What are the margins for the bounding case? Is the 
component/feature in an area of high or low thermal or structural margin? How far are we from a cliff? 

(6) Assessment based on data, testing and analysis – Is the final assessment based on test 
data and analysis or on expert opinion and gut feel? Where do we actually have data? Are we using too 
much engineering judgment? Was the test/measurement/analysis technique standard and proven or 
new? Do we understand all the assumptions that went into the assessment? Does the 
analysis/assessment rely on a series of dependent or independent assumptions? 

 (7) Interactions with other elements/conditions addressed – Are there any known, compounding 
interactions with other issues, components, changes, etc.? How have the potential interactions been 
identified? How/when will they be addressed? 

Figure 26 is an example of how the Seven Elements tool can be used to guide the process of 
improving flight rationale posture. 

The Seven Element Process is an effective tool in understanding, characterizing and 
communicating the risk to the risk decision makers. It creates a consistent, methodical process to discuss 
the basis for flight safety that helps communicate risk and identify strengths and weaknesses in the 
flight/acceptance rationale. It is a robust technical assessment that focuses on the facts and removes 
emotion from characterizing risk. When implemented early in the process, it provides a ―roadmap‖ in the 
development of the safety of flight rationale. Seven Elements is an excellent communication tool for risk 
decision makers. Focuses on the holes—unknowns and uncertainties are key information for informed 
decision making. It tells the whole story – not just the positive or negative items. This tool probably has 
widespread applicability throughout the Aerospace Industry and possibly throughout any industry dealing 
with risk. 



 

 

 

 

 

THOUGHTS ON MINORITY/ALTERNATE OPINIONS 

 
The people who worked RSRM over the life of the Space Shuttle Program had to deal with many 

significant issues that came up from time to time. We always had a large diverse group of folks working 
the issues at both the contractor and NASA level. A diverse group will always bring the most ideas to the 
table which provides the best chance of getting to the best path. Although we prefer to have a consensus, 
and we always work hard to get as much agreement as possible, occasionally there were times when we 
did not get full agreement, but reached a point in time when decisions needed to be made to get past the 
disagreements so work could continue. In these circumstances we had what some refer to as ―Minority 
Opinions,‖ also referred to as ―Dissenting Opinions,‖ or the words that we prefer which were ―Alternate 
Opinions.‖  RSRM had a few alternate opinions over the life of the RSRM program; there were a few 
things we learned from dealing with these minority opinions that we would like to share here.  

SEEK OUT MINORITY OPINIONS 

We have found that sometimes you need to seek out minority opinions. They are not always 
obvious. Silence doesn‘t always mean agreement – if you have a lot of thinkers supporting you as we 
normally did, sometimes you need to give them time to think about it. We found it wise to not allow any 
fence sitters, there are usually people who well tell you that is doesn‘t matter to them, or that they have no 
preference, but after more thorough evaluation, or just more time, we have found this to not be the case—
almost always there is a preferred decision if the issue is studied enough. 

HAVE A TEAM OF FOLKS LISTEN CAREFULLY – HEAR THEM OUT 

We have found it wise to pull in a team of three of so people that would be considered experts or 
knowledgeable on the subject and knowledgeable on what is being recommended by the alternate 
opinion. We suggest that you try to avoid arguing or making counterpoints until they‘ve been thoroughly 
heard out. Always keep in mind that the alternate opinion could be right. 

 

Figure 26. Seven Elements Tool. 

 



 

 

MAKE A DECISION AND TELL THEM HOW YOU GOT THERE 

Eventually decisions will need to be made for continued progress. Evaluate all the information 
you have and make a decision. If you go counter to what is being recommended by the alternate opinion, 
explain to them how you got to your decision. 

BE AN ADVOCATE FOR THE MINORITY OPINION 

Even though your decision may be counter to the alternate opinion, you should become an 
advocate for the opinion and encourage and offer to take it forward—remember as stated above, they still 
could be right. If they want to take the alternate opinion forward, use the management chain to hear the 
alternate opinion and use your decision as your recommendation to management. 

ALLOW FOLKS TO CHANGE THEIR MINDS 

When the ―Thinkers‖ are given more time to think about the issue and positions, sometimes they 
change their minds on things. Just because someone had previously taken a position that is in agreement 
with your current direction, there can be new data or a new way of thinking that causes them to take 
another position. The reverse can also be true, people with alternate opinions sometimes hear from the 
experts or just think about the issue some more and change their positions. We would recommend that 
you freely allow either of these. 

 

RSRM LEARNING FROM REUSABILITY 

 

As previously stated, reusability of the RSRM led to postflight inspections that caught many 
issues in its infancy before they could become major issues.  There were however some unique things 
encountered just from reusing the hardware.  Sometimes splashdown damage to metal hardware 
prevented reuse, we found that hardware had to be re-measured carefully to assure all engineering 
dimensional requirements were still met.  Early on in the program we discovered that the initial three 
pressure cycles (counting both proof tests and motor pressurizations) would incrementally stretch the 
RSRM D6AC steel case hardware in highly stressed areas by factions of a percent, but that it could affect 
critical dimensions including areas near seal surfaces.  When this was discovered we added three proof 
cycles to all new case hardware prior to each use to prevent dimensional changes from subsequent 
pressure cycles.  We also discovered that hardware had to be clean and protected as quickly as possible 
after recovery to prevent corrosion.  Motor combustion products mixed with salt water at splashdown was 
found to be highly corrosive.  When hardware was disassembled and exposed to this mixture, 
assessments had to be made quickly and the hardware cleaned and greased to prevent further corrosion.  
Several metal segments were lost early in the program from seal surface degradation from corrosion that 
occurred from disassembly and exposure.  Also, occasionally we experienced extensive splashdown 
damage to nozzle and/or case hardware that required unique methods to be developed just to 
disassemble the hardware.  Special tools or methods had to be developed many times real time during 
the disassembly process. 

 

MOTOR EVOLUTION FROM THE FOUR SEGMENT TO FIVE SEGMENT FOR SLS 

 

In the mid-2000‘s, NASA initiated the Constellation Program which included an objective of 
developing a spacecraft/launch system that could carry astronauts/payloads to Low Earth Orbit which 
could support future NASA program needs in this space regime. Known as Ares, the rocket system that 
was conceived included a five segment first stage solid rocket motor known as the RSRMV. This motor 
was based off of the Shuttle RSRMs and took advantage of the knowledge gained from the ETM-3 five 
segment motor test performed in 2003 to assess RSRM margins. Performance drivers for Ares were a 



 

 

56,200 lbm payload to orbit, a maximum dynamic pressure of 800 psf, a maximum acceleration of 3.8 g, 
and a goal to maximize the use of heritage hardware from the Shuttle.

7
 Modifications to the RSRM design 

were made to improve performance (thrust), eliminate hazardous materials and replace obsolete 
materials. Changes from the RSRM are shown in Figure 27 and included: (1) increasing the number of 
center segments from two to three, (2) increasing the number of propellant fins in the forward segment 
from 11 to 12, (3) the addition of forward chamfers on center and aft segments, (4) lowering the propellant 
burn rate (5) modification of the propellant inhibitor heights and thicknesses, (6) increasing the nozzle 
throat diameter, (7) extending the nozzle exit cone, (8) modifying insulation and liner formulations to 
eliminate Chrysotile fibers, and (9) modifying the insulation lay-up to increase thermal protection. Three 
development motors were successfully static tested at the ATK test facility in Promontory, Utah before the 
program was ended in October 2011 (see Figure 28). A comparison of the design characteristics for the 
RSRM, ETM-3, and RSRMV is shown in Table 1. NASA is now moving forward with the next human 
space exploration program. The U.S. Space Launch System (SLS) will provide an entirely new capability 
for human exploration beyond Earth orbit. It also will back up commercial and international partner 
transportation services to the International Space Station. Designed to be flexible for crew or cargo 
missions, the SLS will be safe, affordable, and sustainable, to continue America‘s journey of discovery 
from the unique vantage point of space. The SLS will take astronauts farther into space than ever before. 
Marshall Space Flight Center is leading the design and development of the rocket system that can take 
humans, cargo, equipment, and science experiments to the Moon, asteroids, LaGrange points, and 
eventually to Mars. The initial lift capability is 70 tonnes (154,323 lbm) which is more than double the value 
of any current lift vehicle today. Future plans will evolve the lift capability to 130 tonnes (286,601 lbm), the 
most of any vehicle ever. RSRMV motors will be used on the first two development flights (one 
unmanned, one manned). After that, an advanced booster system will be competed for the evolved 
launch vehicle. Figure 29 shows how the SLS configuration will evolve. 
  



 

 

 
 

 

     

 

 

  

Figure 28. Ares First Stage DM-3 September 8, 2011. 

 

Figure 27. Changes from RSRM to RSRMV. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1. Motor Design Comparison 

 

 
 

Figure 29. Evolution of the SLS Configuration 

 

SUMMARY 

The Space Shuttle Reusable SRM was a highly reliable human-rated SRM. At the time of this 
print, the RSRM was the largest diameter SRM to achieve flight status and the only large-scale SRM to 
be human-rated. The RSRM was instrumental in the development of the SLS launch system. The RSRM 
achieved this high reliability by applying special attention to Process Control, Testing, and Postflight, and 

 RSRM ETM-3 RSRMV 

Motor    

 Overall Length (in.) 1,513.49 1,868.25 1,868.25 
 Case Diameter (in.) 146.08 146.08 146.08 

Nozzle    

 Throat Diameter (in.) 53.86 56.11 56.86 
 Exit Diameter (in.) 149.64 152.75 152.75 
 Expansion Ratio 7.72 7.41 7.22 

 TVC Vector Clearance at 
Throat (deg) 

11.64 11.64 5.22 

Ballistics    

 Total Propellant Weight 1,106,000 1,366,000 1,383,000 
 Maximum Thrust 3,326,000 3,690,000 3,566,000 



 

 

by thoroughly and timely communicating and dealing with all issues encountered. We followed a 
structured and disciplined approach for identifying and dispositioning all issues and all ―out-of-family‖ 
conditions. We learned to carefully consider and disposition alternate opinions. We tried to learn as much 
as we could from our lessons. 
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