NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change ImpactsCity growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will potentially affect land cover LSTs across the Center. Moreover, the weather stations will also provide baseline data for developing a better understanding of how localized weather factors, such as extreme rainfall and heat events, affect micrometeorology. These data can also be used to model the interrelationships between LSTs and meteorology on a longer term basis to help evaluate how changes in these parameters can be quantified from satellite data collected in the future. In turn, the overall integration of multi-temporal meteorological information with LULCC, and LST data for MSFC proper and the surrounding Huntsville urbanized area can provide a perspective on how urban land surface types affect the meteorology in the boundary layer and ultimately, the UHI. Additionally, data such as this can be used as a foundation for modeling how climate change will potentially impact local and regional meteorology and conversely, how urban LULCC can or will influence changes on climate over the north Alabama area.
Document ID
20120003138
Acquisition Source
Marshall Space Flight Center
Document Type
Presentation
Authors
Quattrochi, Dale A.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Jedlovec, Gary
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Meyer, Paul
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 25, 2013
Publication Date
December 5, 2011
Subject Category
Earth Resources And Remote Sensing
Report/Patent Number
M11-0945
M11-1372
Meeting Information
Meeting: 2011 American Geophysical Union (AGU) Fall Meeting
Location: San Francisco, CA
Country: United States
Start Date: December 5, 2011
End Date: December 9, 2011
Sponsors: American Geophysical Union
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available