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1.0 Introduction

The Large Civil Tilt-Rotor (LCTR) is part of NASA’s Heavy Lift Systems Investigation. This
proposed 90 passenger aircraft would offload short to medium range air traffic from large airports and/or
runways. Due to its vertical takeoff and landing capability, only a helipad would be needed within
existing airport infrastructure (Figure 1.1).

The proposed vehicle has four turbo-shaft engines powering two rotors. Each engine is to develop
7,500 hp for a total 30,000 hp. The mission would require high rotor rpm at sea level take off (650 ft/s tip
speed) and significantly lower rpm at cruise (350 ft/s tip speed) (Ref. 1). That is, the cruise rpm of the
main rotors is 54 percent of the SLTO rpm. This requirement comes from the fact that the main rotors are
more efficient at low rpm during the altitude cruise but require high rpm during sea level take-off
(SLTO). The turboshaft engines will drive the main rotors through a gearbox enabling the high rpm
power turbines (PT) to spin the low rpm (103 to 191 rpm) main rotors. Each main rotor is driven by two
engines. There are two possible methods for achieving the required rpm sweep.

1. Two (or higher) gear-ratio transmission: with the power turbine operating at near constant rpm.
2. Fixed gear-ratio transmission: with the power turbine experiencing the full 54 to 100 percent
speed range.

For method 1, the complexity of designing a flight weight, 15,000 hp transmission (two engines X
7,500 hp each), while obtaining high life and reliability is a formidable task. The method for changing
gears (ex. torque converter, clutch, etc.) would also need to be addressed. This method is not within the
scope of this study and will not be further considered.

Figure 1.1—NASA LCTR Concept
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Nomenclature

AN? See Appendix B

Cm/U Flow Coefficient

Cx/U Flow Coefficient

Ahy/U? Work Coefficient

FOM Figure of Merit

ho Total Enthalpy

LCTR Large Civil Tilt-Rotor

LE Leading Edge

n Efficiency (see Appendix G)

NPSS Numerical Propulsion System Simulator
PT Power Turbine

SLTO Sea Level Take Off

TE Trailing Edge

U Wheel Speed (usually associated with midspan)
VSPT Variable Speed Power Turbine

2.0 VSPT Concept Development
2.1 Figure of Merit

In this study various techniques are investigated to improve efficiency and off-design characteristics
of a power turbine operating in the LCTR mission. The relative performance of each design modification
needs to be assessed using some form of figure of merit (FOM). The FOM chosen for this study is overall
fuel burn during the mission. The overall mission profile is not well established at this time so a fictitious
but representative mission needs to be assumed. Based on the work of Snyder and Thurman (Ref. 1), a
study engine simulation was generated using the Numerical Propulsion System Simulator (NPSS). This
simulation software has the ability to predict engine performance throughout the flight envelope based on
performance maps of the individual engine components. Four output points were generated from this
model and made available for this study. These four flight conditions are:

Point 1

SLTO; 100% PT Speed, 100ft, 0.0 Mach, Std. Day
Point 2

Climb; 100% PT Speed, 2,000ft 0.0 Mach +45 °F
Point 3

Start Cruise; 100% PT Speed 28,000ft 0.51 Mach Std. Day
Point 4

Cruise; 54% PT Speed 28,000ft 0.51 Mach Std. Day

A detailed output from the NPSS cycle model is included in Appendix A. These four points are the
only points currently available from the model and therefore a mission made up of only these four points
was assumed. The actual mission will deviate significantly from this mission, but this mission is used as a
starting point (Table 2.1).

This mission was made to mimic the mission shown in Figure 2.1, provided by C. Sndyer of NASA at
contract start.

NASA/CR—2012-217424 2



TABLE 2.1 —LCTR MISSION SEGMENTS

Point |Description Atime [Cycle PT| Power Wf PT Fuel Burned
Minutes ETA hp Ibm/hr | Speed Ibm
1 SLTO;100% PT Speed,100ft,0.0 Mach, Std. Day 2 0.85 7500 2581.28  100.0% 86.0
2 Climb;100% PT Speed,2,000ft0.0 Mach+45°F 2 0.8266 4639.6 1761.6  100.0% 58.7
3 Start Cruise;100% PT Speed 28,000ft 0.51Mach Std. Day 30 0.8485 2651.5 836.01  100.0% 418.0
4 Cruise;54% PT Speed 28,000ft 0.51 Mach Std. Day 180 0.7859 2345.4 805.23 54.0% 2415.7
3 Start Cruise;100% PT Speed 28,000ft 0.51Mach Std. Day 30 0.8485 2651.5 836.01 100.0% 418.0
2 Climb;100% PT Speed,2,000ft0.0 Mach+45°F 2 0.8266 4639.6 1761.6  100.0% 58.7
TOTALS 246 Minutes 3455.2 Ibm
_or-
4 hours
6 minutes

LCTR Mission Profile (“similar” to Regional ai

Alternate
Destination + Reserve Fuel
Cruise @ design 30 nm 30 min @ 10,000°, 1SA
airspeed to mission range
21000 nm @ =~ 310 knots
bout 3 ho
e urs) Transfer Altitude
limb to 25,0007 cruise (conservative
Taxi, 4 min altitude @ MCP estimate of fuel)
(25-30 mins) No credit for range.
Ground check,
1 min @ 60% .
takeoff power Takeoff & convert, 2 min Final o land

@ 5,000°, ISA+20C
(actual conversion is TBD)
Vertical landing, 1 min
@ 5,000°, ISA+20C

Engines and transmission were sized for the most demanding of Category A OE| takeoff or landing segments at
5,000 feet pressure altitude, ISA + 20°C or 2,000 feet, ISA +25°C.

Mission fuel is cruise-dominated.
Propulsion system weight and overall fuel efficiency are critical

LR M g s St 210 S R W it =
Figure 2.1.—LCTR Mission Profile

Unfortunately, cycle points such as idle and taxi were not available to use in this cycle so there is
some error introduced. The mission used in this study (Table 2.1) includes a long cruise segment of 3 hr
with % hr of climb condition before and after. There is also some high power SLTO time at the beginning
and end of the mission to simulate vertical takeoff and landing.

Given the cycle predicted fuel burns at each condition and the assumed duration of each segment, the
fuel burned can be integrated. (Eq. (1))

nseg )
Wiiel = zwfuel x ATime (1)
seg=1

NASA/CR—2012-217424 3



Table 2.1 shows that the predicted fuel burn would be 3455.2 Ibm of fuel per engine over the 4 hr and
6 min flight. Because all of the power to drive the main rotors comes from the power turbine, the fuel
burn at any condition will be proportional to PT efficiency. Therefore we can evaluate the impact of
predicted PT efficiencies (npt) throughout the mission by scaling the fuel flows by the ratio of predicted

Nper to cycle npr.

= M predicted
edic ; .
Wit = >~ gy x ATime 2)
seg=1 T1cycle

Using this technique, a prediction for ner can be input into Equation (2) for each of the four cycle points
and an overall mission fuel burn can be calculated. Comparing the new predicted fuel burn back to the
cycle prediction (3455.2 Ibm) yields the FOM used in this study.

2.2  Efficiency Prediction Technique

Efficiency predictions are made by the use of a “‘meanline’ analysis. The meanline used is proprietary
to Williams International and is referred to as “‘MeanTurb’. MeanTurb is a row by row analysis tool that
tracks the mean particle through each airfoil row. All three components of velocity are modeled which
makes the tool very general and can be used for axial, mixed flow, or radial turbines. The velocity
triangles are solved with the loss system, cooling flows (if applicable), gas properties, and seal leakages
all converged simultaneously. The solution technique is to solve each blade row independently and then
use small-change effects (Jacobian matrix) and Newton’s Method to close on continuity, angular
momentum, and energy. The loss system used in this study is a combination of various public domain loss
systems (Kacker and Okapuu (Ref. 4) and Moustapha, Kacker and Tremblay (Ref. 5)) with modifications
based on Williams International experience.

The technique used to predict turbine efficiency is two parts. The first part is referred to as “design
mode’. In this phase a simpler design-mode meanline called “Falcon” is used. This meanline is different
from MeanTurb in that you specify mass-flow, power, pressure reaction and airfoil loading coefficient
(Zweifel). The velocity triangles are calculated using nearly the same loss system as MeanTurb with
several simplifying assumptions. Falcon is wrapped with a graphical user interface which allows for
intuitive design as well as optimization functionality. Figure 2.2 is a screen shot of the interface.

File Info Colors Best Tools

DesignML\ New \
Inlet

Pt 31.0060 Tt [ 1749.0801
T Mdot [12.04000 FAR  [0.01890
Gamma [14  RGAS [5334
#Stages [4  Air@ Temp. & FAR
22000 —Endialls
1D wall #Points ]4— Show Table
oD Wall #Points [S Show Table
_| Use Parametric Endwalls| Show Curvature

[ A1rfoll Tabl

Show Table
[ EGY optier -
_|_Exit Guide Vane|
Rad.
—Disk Designer T
800 Row: [Stage 1 Rotor = Edit

Display Options

® Points W StackLines W Axis| | Best]

MeanLine

Axdal

Figure 2.2—Falcon Meanline Code Interface
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The second part of the efficiency prediction process begins after a satisfactory design has been
produced in Falcon. Falcon writes out an off-design input file for MeanTurb. At this point the geometry is
assumed fixed and parameters such as power, work split, reaction, mass-flow and efficiency are outputs
of MeanTurb. One important point in this study is that the LE metal angles are assumed fixed so the
impact of off-incidence design is captured in the MeanTurb calculations.

2.3 Structural Constraints

The 100 percent speed condition must be structurally viable. This study used aggressive AN? and Rim
Speed limits of 60. E9 in®rpm? and 1200 ft/s respectively as upper limits. (See Appendix B for
definitions.) The most challenging structural design will be the last stage blade which will have the largest
span and highest pull stress. Fortunately it is also the coolest airfoil which aids in creep rupture life.
Although challenging, these limits should be achievable for a long life application. After designing
several flowpaths to this criterion, a sanity check calculation was performed. A meanline analysis was run
for Point 1 (the hottest and fastest of the four performance conditions used) with the inlet temperature
raised by 100 °F to simulate deterioration and hot day operation. The average blade pull-stress was
estimated at 68 ksi and metal temperature at 1190 °F. Based on proprietary material databases, there are
several commercially available alloys capable of >20,000 hr of useful life at these conditions. Over-speed
protection in the event of a gearbox or coupling failure has not been addressed. It is possible that failure
analysis may require more structural conservatism.

2.4 Exhaust Constraint

Choosing the exit annulus area determines the exit Mach number from the turbine (last blade,
absolute frame of reference). The four cycle points given have nozzle (tail pipe) exit Mach numbers of
about 0.27. This very low exit Mach number corresponds to a design philosophy of extracting as much
energy out of the power turbine as possible and achieving nearly no thrust from the nozzle. Achieving
such low exit Mach numbers at the exit of a gas turbine is difficult and results in large, heavy turbines
operating at low rpm. It is more advantageous to design to an exit Mach number of .4 to .55 and diffuse
through the exhaust system. For the purposes of this study, Mach numbers in this range will be used. In a
more formal detailed design, a trade study between nozzle exit Mach number, turbine weight, exhaust
system weight and fuel burn should be performed to find the best overall system trade.

It can be shown that the combination of the structural and exhaust constraints sets the turbine rpm and
the last stage flowpath. That is: picking a Mach number exiting the turbine sets the turbine exit annulus
area because of continuity (although swirl angle and boundary layer blockage play a role). Then, with
AN? already chosen, the rpm falls out. (See Appendix B for more information)

A = function(PT, TT, Mdot, Mach, Swirl) (©))
AN?2

rpm = 4

P A (4)

The Rim Speed can be used to calculate the last blade trailing edge hub radius:
Rim Speed(ft/s) = Radius py, (in.)/12. * rpm *x / 30. 5)

Then the trailing edge tip radius can be determined by the annulus area.

Radiustj, = ‘/%+ Radius,, (6)

From the above relations it is clear that selecting structural criteria and an exit Mach number uniquely
defines the exit of the turbine and the rpm. In a more detailed engine design exercise, the front of the
power turbine would need to mate to the exit of the previous turbine which would further define the

NASA/CR—2012-217424 5



flowpath. In this work, no special attention is given to the proceeding turbine. Detailed design of the
overall turbine section is out of scope.

2.5  List of Analytical Studies

Several analytical studies have been performed to gain confidence and reduce risk in designing a
power turbine capable of nearly a 2X speed variation while maintaining acceptable efficiency levels.

1. Flow Path Selection
a. CX/U
b. Work Coefficient
c. Number of Stages
Loss System Validation via CFD
3. Incidence Tolerant Design
a. LE Shape
b. Airfoil Thickness

n

2.6 Flow Path Selection: Cx/U

Turbine Flow Coefficient, commonly referred to as Cx/U, is the ratio of through-flow velocity to
mean wheel speed. Often Cx/U is referred to as axial velocity over wheel speed but in this study the radial
velocity is taken into account. The meridional velocity is used instead and defined as:

Vmeridional = Vazxial + Vrzadial (7)

For the purposes of this study, Cx/U and Cm/U will be used synonymously and is defined as:

V2. + V2,
Cm/U=Cx/U = N il _ Tradial @
of
where:
all values are calculated at the TE plane of the turbine blade

I' equals the average of the hub and tip radius of the blade TE

The Flow Coefficient, Cx/U is a good indicator of the velocity triangles. Low Cx/U designs are
characterized by high turning and relatively low velocity whereas high Cx/U designs tend towards low
turning (camber) and higher velocities. The airfoil shapes can be dramatically different as shown in Figure
2.3.

The off-incidence loss generated at the LE of an airfoil is a function of two factors: 1) Loss
Coefficient and 2) Inlet dynamic head. Low CX/U designs have lower LE Mach number but higher
swings in incidence. High CX/U designs have lower excursions in incidence but always operate at higher
inlet Mach number. Therefore it is reasonable to assume that there is an optimum CX/U for off incidence
performance. Figure 2.4 and Figure 2.5 show a simplified example of velocity triangle for Low versus
High CX/U designs.

For the VSPT, the corrected speed variation is from 54 to 100 percent. This implies that the wheel
speed (U) varies from 54 to 100 percent but velocity triangle analysis shows that the Cx is nearly
constant. Therefore, CX/U is approximately inversely proportional to speed.

Two flowpaths were generated to look at the impact of CX/U on mission fuel burn. The design
philosophy was to follow the structural and exhaust constraints as given in the previous section and build
turbine flowpaths that have good cruise velocity triangles and airfoil loadings. Once the flowpaths are
established, MeanTurb is run to investigate the off design characteristics. Very good cruise performance
(>90 percent) is achieved with four stage turbines. See Figure 2.6.

NASA/CR—2012-217424 6



el
Sample BLADE
Low Cx/U

Thetavs |

nZp

o0 L L 1 L

04 [
Normalized Mprime

oo 0.2

Sample BLADE
High Cx/U

Theta 05 f

oo L L .
[ 0 014 [ [ 10

Normalized Mprime

Figure 2.3.—Airfoil Shapes

NASA/CR—2012-217424 7



Wheel speed (U)

Absolute tangential
velocity (Ct) _\
Figure 5:

Low Cx/U turbine
Characterized by high
turning, low inlet velocity
airfoils.

Large swings in incidence
with speed variation

Through-flow
Velocity (Cx)

or

Figure 2.4.—Low CX/U Design Velocity Triangles

Wheel speed (U)

Absolute tangential
velocity (Ct)

Through-flow
Velocity (Cx)

Figure 6:

High Cx/U turbine
Characterized by low turning,
high inlet velocity airfoils.
Low swings in incidence with
speed variation

Figure 2.5—High CX/U Design Velocity Triangles

NASA/CR—2012-217424 8



16.00

1200 F

Rads.00

4.00 F

0.00

-2.00

16.00 ¢

12.00F

Rads.oof

o.oo

000

200

4.00 6.00
Axial

a.00

J
10.00

-z.00

0.00

Z200

400 6.00

Axdal

g.00

1000

Figure 2.6.—Comparison of High and Low CX/U Flowpaths

NASA/CR—2012-217424



If the turbines in Figure 2.6 were designed for the low speed cruise condition (54 percent speed), they
would have predicted efficiencies of 91.4 and 90.2 percent respectively when operating at that design
point. Unfortunately, each of these turbines is predicted to have an efficiency of 69.3 percent when
operating at the high speed cruise condition (100 percent speed). Likewise, if the two turbines were
designed for the 100 percent speed condition, the efficiencies would be 92.8 and 91.4 percent
respectively. These turbines both would have very low efficiencies (<58 percent) when operating at the
54 percent speed conditions. Of course, these off-design efficiency predictions are highly dependent on
the empirical loss system used in the meanline prediction system. Nonetheless, a compromised design
point somewhere between 54 and 100 percent would most likely be a good compromise. A method for
determining the optimal design point was developed. Four design speeds were chosen: 54, 69, 85 and
100 percent speed. A preliminary design was produced for each of these turbines at each of these speeds.
This preliminary design process sets the LE metal angles and blade counts for the velocity triangles
corresponding to that speed. Each of these designs was then run off-design using MeanTurb to the four
different mission points in order to predict the efficiency. The resulting efficiencies are available in Table
2.2. For each of these designs, the resulting efficiencies for points 1, 2, 3, and 4 were used in Equation (2)
(via spread sheet) and the overall impact to mission fuel burn was calculated, the results of which are also
included in Table 2.2.

The results of Table 2.2 are plotted in Figure 2.7. From this plot, the best design practice is to pick a
design point that is compromised between the low speed and high speed cruise but favoring the low speed
cruise condition. An unexpected outcome of this study is the fact that both the High CX/U design and the
Low CX/U design optimize at about the same speed and result in about the same overall fuel burn.
Neither design philosophy appears to have an advantage. There is no compelling evidence from this study
that CX/U (in of itself) is a determining factor in the design of this type of turbine.

TABLE 2.2—FUEL BURN COMPARISON FOR HIGH AND LOW CX/U DESIGNS

High CX/U
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4
53.8 8045 -3.29 73.34 68.62 69.34 91.39
69.2 10343 -7.88 88.33 84.71 84.12 88.62
84.6 12642 1.41 92.95 90.84 90.63 74.87
100.0 14941 23.20 91.25 91.58 92.80 57.42

Low CX/U
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4
53.8 8045 -2.22 69.98 66.62 69.30 90.20
69.2 10343 -7.80 87.58 83.60 82.85 89.14
84.6 12642 -1.84 92.00 89.60 89.44 78.75
100.0 14941 24.30 89.29 89.78 91.43 57.00
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2.7 Work Coefficient

The Work Coefficient (Ahy/U?) is a dimensionless parameter relating the turbine work to the mean
wheel speed of the turbine. The use of Work Coefficient (Wcoeff) combined with Flow Coefficient
(Cx/U) was popularized by Smith (Ref. 6) with his correlation of turbine efficiency using both
parameters. Smith showed that there was an optimum relationship between the two parameters. There is
no indication that Smith’s 1965 correlation considered turbines operating far off-design so it is not
obvious whether his correlation is helpful in determining optimum velocity triangles for the LCTR power
turbine application when operating at its full range of speeds. The Smith correlation was presented
(Ref. 6) as a plot and Figure 2.8 is a reproduction produced by digitizing the figure in his paper.

Assuming the LCTR power turbine is designed at the 54 percent cruise condition, then as the turbine
transitions from 54 to 100 percent speed, the Flow Coefficient (Cx/U) and Work Coefficient (Ahy/U?)
change considerably. MeanLine and cycle analysis confirm that Ahy/U? is nearly proportional to 1/rpm?
and Cx/U is nearly proportional to 1/rpm. Therefore the Wcoeff increases by 1/.54° or 3.4 times when the
rotor speed drops from 100 to 54 percent rpm. Likewise the Cx/U increases by a corresponding factor of
1/.54 or 1.85. If Smith’s correlation indicates optimum relationships between these two parameters, it is
reasonable to assume that it may provide some guidance in designing a turbine that transitions over a
large swing in these parameters. The two turbines in the Cx/U study were placed on the Smith correlation
in Figure 2.9.
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From this plot, the high Cx/U flowpath is shown to transition through the heart of the efficiency
islands while the low Cx/U is in a non-optimum part of the correlation.

Both flowpaths developed in the Cx/U study have similar Work Coefficients which drop to very low
levels when the rotor rpm is at 100 percent. These low levels are outside of normal gas turbine design
experience. Another study was conducted to investigate the impact of running to higher Work coefficients
in order to assure operation within the traditional design space. A new flowpath was generated by
removing the first stage but holding the same rpm and about the same overall radius of the last three
stages. This Three Stage turbine has the same power and speed as the two four stage turbines already
analyzed but the average work per stage is higher (by the ratio of 4/3). Figure 2.10 compares the Three
Stage turbine with the High Cx/U four stage design from the previous study.

The same process of picking four design speeds, calculating efficiency at each of the four mission
points, and integrating the fuel burn across the mission was performed with the Three Stage design. Table
2.3 documents the results and Figure 2.11 plots the Three Stage turbine results against the results of the
Four Stage Cx/U study.

The Three Stage does not show a predicted improvement in overall fuel burn relative to the lower
work four stage designs, but it does show a significantly different trend. Figure 2.11 shows that the Three
stage turbine is more forgiving than any of the Four Stage designs in choosing the design speed. It also
indicates that the optimal design speed is closer to the SLTO rpm which is different than the previous two
designs and is not the expected result. In Figure 2.12, the Three Stage turbine is shown on the Smith
Correlation compared to the two Four Stage designs. The Three Stage falls between the two Four Stage
designs. If the Smith Correlation were a good indicator of off-design capability, then it could be expected
that the Three Stage design would have off-design performance characteristics between the two Four
Stage designs: which it clearly does not.

The large difference in character between the Three Stage and Four Stage designs begs the question
as to what makes the Three Stage so different. The difference in Work Coefficient appears to have played
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a significant role. At 54 percent speed, the Work coefficient of the Three Stage turbine is about 2.1 which
is well within design experience. Designing to higher Work Coefficient may further improve
performance. Higher Work Coefficients are generally more challenging to design because they result in
higher airfoil turnings and Mach numbers. The practical limit is approximately 3.0, above which the
design becomes very challenging. To assess whether higher Work Coefficient is better for overall mission
fuel burn, a High Work Four Stage turbine was designed (Figure 2.13). The Work Coefficient at the 54
percent cruise speed was set at 2.83 and the Flow Coefficient was set to 1.0 in an attempt to stay in the
center of the Smith Correlation. After the same process of picking four design speeds, calculating
efficiencies, and integrating mission fuel burn, this design proved to be the best out of a total of 8
flowpaths that were examined (Table 2.4). The flowpath is reduced in radius relative to the designs
presented so far, making it smaller and lighter, which is an added benefit. (Figure 2.14)

The fuel burn calculation versus speed plot for this turbine is shown in Figure 2.14.

The corresponding Smith Curve correlation is shown in Figure 2.15.

TABLE 2.3.—Three-STAGE TURBINE RESULTS

3 Stage
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4
53.8 8045 -1.11 70.57 66.14 67.52 89.72
69.2 10343 -4.51 78.24 74.89 74.04 89.63
84.6 12642 -7.19 93.53 91.76 91.60 84.44
100.0 14941 -6.36 92.35 92.49 93.53 66.26
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TABLE 2.4.—FOUR-STAGE TURBINE SEGMENT FUEL BURN
4 Stg Hi Loading (1)
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4
53.8 8045 -0.84 78.77 71.42 69.10 87.45
69.2 10343 -7.98 90.15 87.28 87.13 87.37
84.6 12642 -8.31 93.67 92.32 92.37 85.64
100.0 14941 -3.68 93.96 93.59 94.26 79.31
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A complete description of the 8 flowpaths examined in this study is provided in Appendix C.

This flowpath (Four Stage: High Loading 1) emerges from the flowpath study as having the best
potential to minimize mission fuel burn. This conclusion is based on the assumption that the meanline
loss model and, more specifically, the off-design loss model adequately predict the efficiency
characteristics through a significant range in incidence and loading. Presumably, the design is centered in
the design space such that the turbine will not rapidly lose performance as speed and loading change
throughout the flight envelope. In order to gain confidence in this conclusion, a 3-D design was executed
at 75 percent speed (11174 rpm) and investigated in various CFD simulations. Appendix D contains both
the 3—-D and 1-D analysis summaries for the design conditions. An additional summary of the meanline
predictions for 54 and 100 percent design speed is presented in Appendix E. This is provided to illustrate
the large impact of the full speed variation and its implication to the design velocity triangles.

2.8  3-D Design Execution

Airfoils were designed consistent with the chosen flowpath (Four Stage: High Loading 1). The design
was executed at 75 percent speed, i.e., 11174 rpm. The basic methodology for executing the 3-D design
was as follows:

o Each of the 8 airfoils is designed by stacking three 2-D design sections, i.e., a hub section, a
mean section and a tip section. (Figure 2.16)

e Each 2-D section is manually designed in an interactive design tool called “FoilGen”. (Figure
2.17) FoilGen has a variety of tools that allow for simple structural analysis, 2-D aerodynamics,
3-D stacking and airfoil internal core validation if applicable.

o Design iterations are passed through an in-house 3-D solver called VORTEX. VORTEX has an
inviscid mode with an empirical loss model which aids in establishing the correct velocity
triangles in the absence of viscous effect. This solver runs fast enough to execute several design
iterations per day.

o Designs are validated via viscous simulation. VORTEX can be run with the full Navier Stokes
equations turned on. The turbulence model is the x-o model with integration to the walls (no wall
functions). A steady state mixing plane assumption was used at the interface between stators and
rotors.

The full Four Stage design was executed at 75 percent speed which is consistent with Figure 2.14.
This places the design point approximately half way between the cruise (54 percent speed) and the SLTO
(100 percent speed) conditions. The airfoil geometry was not refined to a final status for all 8 airfoils, but
only to a satisfactory level for further study. The third Stage was chosen as a representative stage for more
in-depth analysis. The third Stage design was pulled out and further refined (Figure 2.18). Calculations
were performed using boundary conditions from the full Four stage calculation. A detailed review of the
full four stage 3—-D CFD run is documented in Appendix D.
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2.9 Loss System Validation via CFD

The optimum flowpath selected for this turbine and the choice of design speed relies on the off-design
predictive capability of the meanline analysis. In order to assess the validity of this model, various CFD
models were exercised. The third stage vane and blade were chosen as a representative set of airfoils.
Two separate studies were performed. The first study addresses the incidence tolerance of the third blade
and the other adds the vane and assesses the third stage together. The blade study was performed with two
different blade thicknesses.

2.10  Turbine Blade Incidence Study

The third stage vane and blade were run together through a series of CFD runs. All CFD runs are
based on steady state assumptions using mixing planes to account for time averaging between stationary
and rotating frames. The inlet conditions (Total Pressure, Total Temperature, and gas angles) to the third
vane were held fixed and the exit static pressure from the third blade was also fixed. The CFD was then
run over a sweep of rpm. This analysis will simulate the incidence and loading sweeps that the blade
would undergo throughout the operating envelope while the vane remains fixed at design point. The
meanline was run exactly the same way to predict the efficiency changes as the speed changes. Both the
meanline and the CFD assume no leakage flows, cooling flows or tip clearance. The meanline has a real
gas model while the CFD runs assume ideal gas. The CFD confirms the large incidence swing and
loading changes that are expected as the rpm is varied. Four different CFD simulations were performed;
each one was swept through the speed range. All four simulations predict better incidence tolerance than
the meanline correlation. This result is particularly satisfying because the meanline prediction was better
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than the cycle simulation. If actual incidence tolerance is better than the meanline characteristic, than
overall engine performance should surpass the NPSS simulation.
The four CFD simulations used are:

1. VORTEX (Williams International proprietary solver). k-o turbulence model, integrated through
boundary layers to the wall.

2. FLUENT (ANSYS, Inc.) k-¢ realizable, using wall functions

3. FLUENT «-o turbulence model, transitional flow model

4. FLUENT «-o turbulence model, SST

All FLUENT calculations used a density based, implicit solver while VORTEX used a density based
explicit solver. FLUENT version 6.3 was used.

Figure 2.19 compares the meanline prediction and the four CFD runs. Inside of the design speed
range, all four CFD simulations predict flatter efficiency trends than the meanline. There is considerable
variability in the predicted level of efficiency among the FLUENT turbulence models. VORTEX and the
Std, k-o SST model are very similar and close to the meanline level. The transitional flow model for k-®
predicts unrealistically low efficiency even at the design point. VORTEX was run to a more broad speed
range to search for an incidence cliff. It did reveal a very rapid fall off in efficiency at 40 percent speed
when the loading was high enough to cause suction side separations. At that condition, the efficiency fall
off was more rapid than predicted by the meanline.
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Figure 2.19.—Efficiency Comparisons for Four Turbine Designs
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Figure 2.19 is good testimony to the fact that CFD is still paced by the lack of fidelity in turbulence
modeling. The level of efficiency predicted by various turbulence models is significant. However, all four
models predict a very similar efficiency trend with speed. The results give some confidence that the
design may meet its incidence tolerance goals but is not adequate to completely mitigate risk. If it were
necessary to chose between a fixed speed turbine and a variable speed turbine, a turbine rig test would
still be recommended to determine if this design can truly meet the incidence tolerance goals. Another
observation from Figure 2.19 is that the turbine blade is more tolerant to negative incidence than positive.
This would lead us to move the design speed lower (higher camber airfoils) and allow the turbine to run
off-design further on the negative side than the positive.

2.11 Thin Turbine Blade Incidence Study

Traditional airfoil design philosophy would indicate that larger leading edge diameters are more
incidence tolerant than smaller diameters. While this is well established for airfoils in a free-stream, it is
not nearly so obvious for airfoil cascades where the internal flow between the airfoils is more like channel
flow than external flow. When a cascade airfoil has a larger LE diameter, the entire airfoil must be
thicker. Thicker airfoils have higher through flow velocities and therefore (by intuition) generate more
viscous scrubbing losses. Although this statement seems straight forward and logical, the high camber
inherent in gas turbine blades complicates the situation.

Consider the airfoil shown in Figure 2.20. The throat of the airfoil cascade spans from the TE of one
airfoil to the suction side of an adjacent airfoil. The passage between the two airfoils is bounded by the
suction side of one airfoil and the pressure side of the adjacent. This passage controls the through-flow
Mach numbers of the gas as it passes through the airfoils. It is desirous for this passage to be separation
free and as low loss as possible. In this figure, the design philosophy is to produce a smooth, converging
passage through the airfoil to the throat. To illustrate this passage convergence, a line of the same
dimension as the throat is shown in orange. It is swept forward in the direction of the green line
perpendicular to the suction side resulting in the orange trace. This gives a visual cue to the convergence
through the passage as well as how the airfoil pressure side can impact the channel convergence.

Now consider the airfoil shown in Figure 2.21. This cascade has the same suction side as Figure 2.22
but a pressure side that results in a thinner airfoil. The airfoil passage now has a non-smooth area
distribution through the channel. After the leading edge of the airfoil, the pressure side diffuses and then
converges to the airfoil throat. Experience with this type of cascade would predict pressure side separation
and reattachment as sketched in light grey. If the resulting separation bubble is large enough, the resulting
blockage may result in through-flow Mach numbers similar to the airfoil in Figure 2.20. Separation
bubbles that occur at relatively low velocities and are followed by strong acceleration generally do not
generate high pressure loss. However, in the case of a rotating blade, the low momentum fluid trapped in
a separation bubble can be centrifugally pumped outward due to the high rotational acceleration field.
This can cause much higher loss than in the case of a stationary airfoil.

A study was executed to determine if a thin blade could potentially improve overall fuel burn by
lowering through-flow velocity or would a separation bubble out-weigh any perceived benefit. Again the
third stage was used as a representative stage. The blade was redesigned to be thinner but still maintain
the same suction side as the nominal blade.

Figure 2.22 shows visually the change made to the blade. The brown line in the background indicates
the nominal blade pressure side.
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The thin blade should be more susceptible to pressure side separation at high negative incidence (high
speed). At positive incidence (low speed), the air impinges on the airfoil in a more favorable way for the
pressure side and may not separate. We would therefore expect a thin blade to be similar or better at low
speed but potentially worse at high speed. The airfoil in Figure 2.22 was run through FLUENT in a
consistent manor with Figure 2.19. The results are shown in Figure 2.23. The dash lines indicate the
results of the thin airfoil and are color consistent with the nominal blade run to the same turbulence
model. The results are very similar with the thin blade overall slightly higher in loss. All three analyzes
hint that low speed performance trends better than high speed performance. Based on this study there is
no compelling evidence to depart from normal design philosophy (i.e., smooth channel convergence).

2.12  Third Stage Combined Incidence Study

The third Stage combined study was conducted in similar fashion as the third blade only study. The
simulation was composed of the second blade, the third vane and the third blade. (Figure 2.24) The inlet
conditions into the second blade were held fixed in the absolute frame of reference simulating the exit
conditions of the second vane. The exit condition of the third blade was a free vortex boundary with the
average static pressure iterated to match the proper exit corrected flow. In order to assess the third stage
performance, the efficiency of the second blade was ignored and the third stage was calculated based on
its inlet and exit conditions in the converged solution. The meanline analysis was performed in exactly the
same manor so that the CFD and meanline results may be compared directly. The speed was varied in a
similar way as was done in the blade only study. There was no tip clearance, leakage or cooling modeled.
In this calculation both the third vane and third blade experience the incidence swing associated with the
speed change, therefore the efficiency impact with speed is higher than the previous study. Figure 2.25
compares the resulting meanline efficiency to the CFD prediction. The conclusions are generally the same
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as the blade only calculations. The CFD prediction is more incidence tolerant than the meanline
prediction and also indicates that negative incidence (high speed) is more forgiving than positive
incidence.

The third vane total pressure loss was extracted from the CFD and compared to the meanline
prediction as well (Figure 2.26).

The vane exhibits a similar trend as the blade in that it is more incidence tolerant at high speed
(negative incidence) rather than low speed. The vane is exceptionally tolerant at negative incidence
because the pressure side separation bubble is: 1) very small (less than ¥ the thickness of the airfoil), and
2) completely reattached at relatively low Mach number before the airfoil throat (Figure 2.27). Unlike the
blade, the vane is not subject to the high centrifugal acceleration field and therefore the low momentum
fluid trapped in the separation bubble is not transported radially.

Figure 2.24.—Third Stage Speed Study composed of Three airfoils
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Figure 2.25.—Third Stage Performance
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Figure 2.26.—Third Vane Pressure Loss
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All the CFD work performed suggests that mission fuel burn is improved by designing for relatively
low corrected speed. In this present work, the design speed chosen was 75 percent speed, or
approximately half way between low speed cruise (54 percent) and high speed take-off (100 percent)
based on meanline predictions. The CFD suggests that the turbine is: 1) more forgiving than the meanline
predictions and 2) able to tolerate higher negative incidence. A lower design speed may further improve
overall mission fuel burn. Figure 2.14 would suggest a design speed of 70 percent as a logical
compromise or next design iteration. Designing for lower speed also results in airfoils with higher
camber. This is an added benefit because higher camber airfoils are generally stiffer and more resilient to
high cycle fatigue.

2.13  Airfoil Leading Edge Geometry

The aviation industry routinely designs wings for variation in loading and incidence. From the largest
commercial aircraft to the private general aviation airplane, variable geometry (flaps and/or LE slats) are
employed to increase loading coefficient and wing area during take-off and landing. Zenith Aircraft
Company uses a fixed LE slat (Figure 2.28) to make their STOL CH 701 stall resistant to very high
angles of attack. The completely passive nature of their design is very attractive from a cost and
complexity standpoint. Similarly, in this VSPT design, it would be very desirable to include features that
improve tolerance while being completely passive. Turbine airfoils are relatively small and made from
investment castings. It would be impractical to attempt to cast them with such intricate details. It would
however be very advantageous to design turbine airfoils with a LE shape that was inherently incidence
tolerant. One concept investigated in this study is to attempt to smooth the LE curvature distribution as
much as possible in order to allow the air to smoothly transition from the LE to the airfoil pressure and
suction sides.

Turbine airfoils are typically designed with an elliptical LE connected to a curved pressure and
suction side. See Figure 2.29. Although the intersection of the ellipse and airfoil curves is designed to
match point and slope, it does not typically match curvature and can in fact be discontinuous. In order to
assess the impact of this discontinuity, a smoothing algorithm was developed and applied to the third
blade from the previous studies. The algorithm calculates the curvature as a function of surface length (S-
distance) and calculates a local correction factor based on the gradient in curvature from one point to the
next. Each point is moved normal to the surface in the direction to smooth the gradient by a small amount.
The process was iterated 200 times until a smooth curvature distribution was obtained. See Figure 2.30.
The actual change in the surface profile required to smooth the curvature distribution is well within any
reasonable casting profile tolerance. As shown in Figure 2.30(b) it is nearly within the thickness of a line
when plotted at a reasonable viewing size. Figure 2.30(c) clearly shows the discontinuity in curvature at
the tangency points and the result of running the smoothing algorithm. Nonetheless, it is still desirable to
establish the best possible design shape and apply manufacturing tolerance about that nominal shape
rather than a less optimal design. In order to determine if the smooth shape is in fact better, the smoothed
third blade was run through the same set of CFD calculations as in the blade incidence study.
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CRUISE

Figure 2.28.—Fixed geometry LE slats. Used with permission
from Zenith Aircraft Company, Mexico, Missouri, 65265-0650.
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Figure 2.29.—Typical Turbine Airfoil Leading Edge Profile
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The changes to the geometry and CFD mesh were basically imperceivable to the eye. The global CFD
results (i.e., efficiency and flow) for the third Blade at design speed (75 percent) were virtually unchanged
relative to the non-smoothed blade. Figure 2.31 gives the mid-span surface static pressure loading also
showing nearly identical results. Despite this disappointing result, the CFD was run at high and low speed
to investigate off-incidence tolerance. The resulting efficiency trend with variation in speed was
surprising. See Figure 2.32. Shown in green, the smoothed LE contour maintained better incidence
tolerance at low speed relative the non-smoothed baseline configuration shown in pink. In order to
understand this, a detailed investigation into the flow field was performed. At the design speed, no
significant flow field changes were evident. This was also true at negative incidence (high speed), but at
low speed, the smoothed LE resulted in an improved flow field. At approximately 80 percent span, the
airfoil suction side loading is highest. As the airfoil loading is increased, this is the most likely location
for the airfoil to separate.

50.0% Span
2 — BaseLine (un-smoothed) 3rd Blade Mean
4 — Smoothed 3rd Blade Mean
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Figure 2.31.—Third Blade mid span static pressure distribution

NASA/CR—2012-217424 30



94

. //\ =

% / N
\

m—\leanLine

=@ BaseLine Blade, no smoothing

/ ==fr==Smoothed 3rd Blade LE

3rd Stage Efficiency
o] o]
[o)] o]

84
5|
82
‘ Speed Range }
80 T T T T T . : .
30 40 50 60 70 80 90 100 110 120

%Speed
Figure 2.32.—Smoothed third Blade Efficiency Trend with Speed

Combing through the velocity vectors did reveal a separation in this location for the baseline
(unsmoothed) blade. The easiest way to visualize this is to capture the separation bubble with a constant
Mach number surface.

In Figure 2.33, the non-smoothed blade is compared to the smoothed blade. An iso-Mach number
surface was generated for each calculation. The yellow-green surfaces shown are surfaces of Mach
number equal to 0.15. Since the through-flow Mach numbers are all much higher than 0.15, all of the flow
beneath the surfaces shown are boundary layers or separations. The non-smoothed blade has a separation
bubble near the tip that is nearly completely removed after the blade is smoothed. The separation bubble
is visually interacting with the secondary flow field near the shroud line.

This result is based on a single solver and turbulence model. No further CFD modeling was
performed within this study. It is not know how transition from laminar to turbulent flow may be
impacted by curvature smoothing. Likewise, the impact of the unsteady flow field is not known.

This work reinforces the importance of maintaining boundary layer health upstream of diffusing
flowpaths. These results are encouraging: they suggest careful design of LE geometry can improve airfoil
incidence tolerance. Additional, this completely passive design does not change the design point
methodology. The design point analysis was completely unaffected by the incorporation of the smoothing
algorithm. Addition research in this area may result in airfoil shapes that are inherently more incidence
capable.
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Figure 2.33.—Separation bubble visualization

3.0 VSPT LCTR Mission Performance Modeling

A thermodynamic cycle model was developed to study the performance impact of various power
turbine designs. The basis of this study was the TS2-NPSS model provided by the NASA Glenn Research
Center. The model was originally created March 5, 2010, and has description: “two-spool turboshaft
about equal work for LPC/HPC, HPC is PR=1.3 axial + centrifugal - includes update for turbine cooling
(best guess for number turbine stages)”. The model was updated from NPSSv1.6.5 to NPSSv2.3 and the
output of the model was enhanced. A copy of the updated model was provided to NASA to assist in
adopting the latest version of NPSS consistent with NASA’s overall goals. The only performance feature
of the cycle model that was modified was the Power Turbine maps.

Three turbine designs were evaluated at the three critical mission points defined in the LCTR
“Design” Mission Profile. These mission points define the design conditions for the overall cycle and
present some challenges for the turbine design because of the wide range of shaft speeds. Table 3.1
summarizes the flight conditions and shaft speeds.

TABLE 3.1.—CRITICAL MISSION POINTS

Mission Segment Takeoff hot Climb Cruise
Time, hr 0.07 1.00 3.00
Power, hp 7859 2646 2351
N3, rpm 15000 15000 8077
Ambient
Mach Number 0 0.51 0.51
Altitude, ft 0 28000 28000
Delta T from standard conditions, F 45 0 0
VTAS, knot 0 303 303
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VSPT Study Total Mission Fuel Burn
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Figure 3.1.—VSPT Total Mission Fuel Burn for Three Williams International Designs

The Takeoff hot condition requires the maximum power at high rotor speed, but the amount of time at
that condition is limited to 3 min for takeoff and 3 min for landing with an additional minute for taxi. The
climb is represented by the top of climb condition at high rotor speed and represents 30 min to climb plus
an additional 30 min to fly to an alternate destination. The cruise condition is represented by the same
flight condition as the climb point, but at shaft rpm that is 54 percent of the full throttle condition and also
at high power output for 3 hr.

The power turbine map provided with the NASA model was run at the three flight conditions and the
power output was used as the requirement for each flight condition. Three power turbines were designed
to provide performance at the cruise condition and to meet the maximum shaft speed requirement. The
turbine design points were set at 65, 75 and 85 percent corrected speed and are labeled accordingly.
Figure 3.1 shows the total mission fuel burn for the three designs.

The three proposed designs have significantly reduced mission fuel burn compared to the baseline
power turbine design. The 75 percent design has the lowest mission fuel burn and is the best design on
this basis. The 75 percent design uses 1.6 percent less fuel than the 65 percent design and 0.6 percent less
fuel than the 85 percent design. The 75 percent design uses 12.1 percent less fuel than the baseline design
and is the best overall design based on this preliminary design study. For each of the three turbine
designs, the NPSS output for the three critical mission points is given in Appendix H.

In the cycle detailed output, there are 6 points presented for each turbine design. The takeoff point
(T/0) is the cycle design point at takeoff power on a standard day at 15,000 rpm power turbine speed. The
second point is takeoff on a hot day. The third point is at the climb condition, 15,000 rpm at the same
power setting as the NASA design climb condition; however the power setting condition logic does not
result in the same power output for different turbine designs. The fourth point is at the climb condition at
the same power output as the NASA design to allow fuel flow comparisons. The fifth point is at the
Cruise condition at reduced shaft speed of 8,077 rpm at the NASA power setting. The sixth point is at the
Cruise condition at the NASA power level and is used for the fuel flow comparison.
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4.0 Development of a Cost-Effective Approach to an LCTR-Relevant VSPT
Component Experiment

Testing of a power turbine presents unique challenges in that it is not self-supporting. In order to test
a power turbine, inlet compressed air is required that requires heating to at least several hundred degrees F
to avoid ice formation on exhaust structures and instrumentation. A power sink is also required that has
excellent control characteristics in order to set rpm and avoid overspeeds. Ideally, the power turbine
should be tested at full scale to minimize Reynolds effects and so that key inter-stage instrumentation can
be inserted without unduly affecting the flow conditions in the local area. Since the VSPT for the LCTR
will be relatively large, full scale testing will require a test facility that can provide continuous flow of
large volumes of heated inlet air with substantial power absorption capability. Use of an existing engine
as a gas generator testbed for testing the VSPT was considered as an option, but ruled out because the
engine operating line would severely limit the range of power turbine entrance conditions that could be
achieved during test. The optimum approach appears to be to develop a dedicated VSPT rig to mate to the
single-spool turbine test facility at NASA GRC. The capabilities and limits of the single-spool turbine
facility, listed in Table 4.1, provide more than sufficient capability to produce the entrance and exit
conditions needed to evaluate the LCTR VSPT design concept at full scale.

There are two basic engine configurations that can provide power to the rotor system, and both have
been used successfully in large numbers of turboshaft and turboprop systems. The gas generator can be
mounted with the compressor facing in the direction of flight, or opposite to the direction of flight. The
aft-facing compressor configuration, similar to that used by the Pratt & Whitney PT-6 turboprop, provides
a very large advantage in that the power turbine shaft can be very short and large in diameter since the
power turbine module is adjacent to the reduction drive gearbox, compared to the long, thin shaft needed
by the forward-compressor configuration, which needs to pass the turbine shaft through the center of the
gas generator shafts. This greatly reduces or eliminates the rotordynamics and torque limitations issues
associated with the long, thin shaft. The disadvantage of this configuration is that the airflow must be
turned 180° prior to entering the inlet, and once again in the exhaust duct. This is necessary to avoid
having the inlets face the ground during VTOL operation. An advantage is that it provides a simple
method for rejecting ice, birds, or other foreign matter before it can enter the gas generator. The forward-
facing compressor configuration requires an S-duct inlet and can use an axial exhaust, which have lower
aerodynamic losses. The aft-facing compressor design also provides a much easier approach to an inertial
separator design for ejecting ice and solid objects, another distinct advantage. Mostly because of the
reduced rotordynamics concerns, the compressor-aft configuration is recommended for the LCTR
application. Figure 4.1 is a schematic of this configuration for a twin-pack LCTR design. The spacing
between the power turbine exhaust and the reduction drive gearbox is the minimum required to provide a
low-loss turn in the exhaust duct.

TABLE 4.1.—NASA GRC SINGLE-SPOOL
TURBINE TEST FACILITY CAPABILITIES

e Maximum Turbine Inlet Pressure 50 psia

e Minimum Exhaust Pressure 2 psia

e Maximum Inlet Air Temperature 940°F
(from in-line vitiated natural gas combustors)

e Maximum Primary Air Flow Rate 27 pps

» Secondary Air (150 psig supply):
» 2 Legs — 1.5 pps each up to 550°F
» 4 Legs —0.08 to 1.19 pps each up to 250°F
» 6 Legs — at 70°F

* Maximum Turbine Rotational Speed 14,000 rpm
(with maximum Gear Ratio, G.R., of 7.87)

* Maximum Turbine Torque 36,217 ftIb/G.R.

e Minimum Gear Ratio, G.R. = 1.51
(Npax= 2,718 rpm; Torque,,,,= 24,000 ft-lby)

* Maximum Test Article Diameter 52 inch
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Figure 4.1.—Schematic of Recommended Engine Configuration for LCTR

Rotordynamics of turboshaft machinery such as tilt rotors are generally divided up into two
categories, lateral and torsional. Each has its own set of typical challenges.

Lateral challenges typically involve long flexible drive shafts that operate above the first flexible
critical mode, i.e., supercritical rotors. Inadequate damping at the bearings results in damaging vibrations
when traversing the lateral critical modes of drive shaft. Controlling run-out and wall thickness variation
of long hollow flexible shafts at reasonable cost is often challenging. Misalignment of drive shaft between
gearbox and power-turbine adds further complexity that must be addressed. Last and perhaps most
important the large overhung tilt rotor makes the system sensitive to rotating unbalance.

Torsional challenges typically involve shock from start up and elevated transient loading through the
drive shaft. Unloading of gear teeth during surge events, back lash, gear run out, random vibration due to
gear inaccuracies and rolling element defects, and closed loop control system instabilities have all been
known to lead to torsional failure modes. All of these issues need to be addressed as part of the full engine
and test article designs.

Figure 4.2 shows a layout of the proposed full scale VSPT test article mated to the NASA GRC single
spool turbine test facility dynamometer drive frame. Locations are indicated for multi-element
instrumentation rakes at the inlet and exit of the VSPT, and for cylindrical radially-translating flow angle
sensors at each of the three interstage locations. The rig inner and outer flowpaths are a combination of
formed sheet metal and machined details, with the inner flowpath and bearing support structures
supported by an exit guide vane row set well behind the last stage rotor. The four-stage turbine is
overhung on the front of the shaft, supported by an aft roller bearing and forward ball bearing to react
thrust loads. As shown, the thrust loads are intended to be reacted through the front bearing and out into
the outer frame structure through the exit guide vane row. The bearing cartridge in the SSTTF has
sufficient load capacity to support the VSPT test article as an entirely overhung mass, so an alternative
approach would be to eliminate the VSPT bearings altogether and hang the VSPT off the front of the
drive spindle. If feasible, this arrangement would simplify the system and eliminate the bearing
lubrication requirements, as well as reducing the cost of the design and hardware. It will be necessary to
analyze the shaft system to ensure that critical speeds are not an issue and displacements do not drive
excessive tip clearances in the test article. The preliminary aero and structural design tasks in the
experimental program will determine if it will also be necessary to include one or more balance pistons to
offset some of the thrust load.
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Figure 4.2.—VSPT Test Article Mated to NASA-GC Single Spool Turbine Test Facility

The four-stage rotor is shown as a clamped assembly with the clamp loads applied at the hub through
curvic couplings. This was done in order to make it possible to use the cylindrical wake angle sensors.
This type of sensor has performed very well in past tests and has the advantage of being much smaller in
diameter than traditional cobra probe sensors because it is supported at both ends of the flowpath rather
than cantilevered from the outer wall. This greatly minimizes blockage but imposes some limitations on
the design of the test component. Since the sensing position on the probe has to transit the entire span
from the outer to the inner wall, provisions must be made for the probe body to penetrate an equal
distance beneath the inner flowpath when the inlet holes are at the innermost radial position. This makes it
impossible to use with a drum rotor configuration. A detailed rotordynamic analysis of the rotor/shaft
system will be a key part of the experimental program and its results will determine whether this approach
is feasible or if a drum rotor configuration with conventional probes is required to achieve sufficient
speed and frequency margins relative to the operating speed range. The spacing between stages and
between vane and blade rows shown in the figure is notional and would be optimized during the test
article design process to provide access and routing for all of the planned instrumentation.

4.1 Experimental Test Plan and Instrumentation List

The proposed operating conditions of the VSPT vary from 54 to 100 percent speed. Therefore, it
would be beneficial to develop a turbine map that fully describes the turbine efficiency within this range.
The proposed test plan to characterize this turbine would include a pressure ratio sweep from 3.0 to 7.0
and a speed sweep of 40 to 120 percent (Table 4.2). Generally speaking, it is easier to change speed than
PR in a test facility so the order of operations would be to set PR and then increment through the speed
range to develop lines of constant PR.
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TABLE 4.2 —PROPOSED MAP/TEST PLAN
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The turbine map should be developed at both high and low Reynolds number where “high” is
equivalent to a SLTO condition and “low” is equivalent to the cruise condition.

Low Reynolds number cruise at highest corrected speed is most challenging condition, and requires
vacuum. For similitude in Reynolds number, PR, Corrected Flow and Corrected speed, the following

table defines the 100 percent speed conditions for the turbine:

Inlet PT

Inlet TT

Inlet Mass Flow
Power

Exit PT

rpm

First Vane Reynolds Number
Last Blade Reynolds Number

Engine

31.01 psia

1749.1°R

12.04 Ibm/s

2740 hp
5.35 psia
14898

178,000
61,000

Proposed Rig
20.6 psia
1260.°R (800 °F)
9.425 Ibm/s
1525 hp
3.55 psia
12645

172,000
61,000

The SLTO (high Reynolds Number) condition requires the following parameters:

Inlet PT

Inlet TT

Inlet Mass Flow
Power

Exit PT

rpm

First Vane Reynolds Number
Last Blade Reynolds Number

Engine

88.49 psia

2166.3°R

9.41 Ibm/s

7500 hp

15.43 psia

14898

395,000
130,000

Proposed Rig
45 psia
1260 °R (800 °F)
20.6 Ibm/s
3350 hp
7.76 psia
12645

377,000
134,000

These rig conditions are within the advertised capability of the New Single Spool Turbine Facility

proposed by NASA to replace W-6A Warm Core Turbine Facility.

In order to simplify the rig as much as possible, the rig would be uncooled. The proposed warm inlet
temperature of 800 °F should allow for nearly no cooling flow. This allows for simple turbine efficiency
calculations based only on measured inlet and exit total pressure and total temperatures. The Turbine

efficiency can be calculated as follows:
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where v is the ratio of specific heats calculated at the average of the inlet and exit temperatures.
The corrected speed is calculated as:

518.67

PMeor =1PM
in

where 100 percent is defined as rpmg,, = 8113.

Of great interest is the turbines performance at the two design conditions (54 and 100 percent) speed.
At these conditions, inter stage gas swirl angle and total pressure profiles will be measured and compared
back to predictions. The use of a cylindrical probe between the stages is proposed to measure gas angles
behind rotors with minimal blockage. It is significantly more difficult to measure the gas angles behind
stators because the circumferential variation in angle and pressure complicates the measurement and
therefore it is not recommended.

Table 4.3 comprises an initial recommendation for instrumentation required to collect the desired test
data.

TABLE 4.3.—PROPOSED INSTRUMENTATION LIST FOR VSPT COMPONENT EXPERIMENT

Sensor type Objective Location Quantity Required
accuracy
Radially translating cylindrical gas  |Measure flow angles exiting each . o
angle sensor turbine stage Nozzle vane Leading Edge 1 per stage, 3 total +1
. Measure total pressure at entrance . o
Six-element total pressure rake and exit of VSPT Inlet and exit 6 +0.5%
. Determine pressure distribution Outer and inner wall, at root of 200D, 201D, 3
Static pressure taps - +0.5%
around vanes nozzle vane locations, 120 total
Six-element total temperature rake  |Determine stage temperature drop Inlet and exit 6 +1°F
Bearing Thermocouple, type K Monitor bearing health Quter race 2 per bearing, 4 total | +10 °F
NSMS or capacitance probe Actively monitor tip clearance At tip of each blade row 4 +0.001 in.
Rub Pins Verify min tip clearance At tip of each blade row 2 per row, 8 total |+ 0.001 in.
Triax accelerometer Monitor vibes for rig health On fwd and aft bearing housing 2 +1g
Real Time Spectrum Analyzer mgﬂ'ﬁor vibes and frequencies for rig Accelerometer output 1 N/A
Oil sump thermocouple, type K Monitor oil temperature Oil sump 1 +10 °F
Strain gage thrust ring Monitor bearing thrust load Fwd bearing 2 + 10 Ibf
Facility Speed pickup Monitor speed facility 2 +10 rpm

4.2  VSPT Component Experiment Program Plan, Schedule, and ROM Cost

A program to provide experimental validation of the proposed LCTR VSPT using the NASA GRC
Single Spool Turbine Facility can be accomplished in 36 months, of which 33 months are required for the
technical effort and 3 months for reporting. Figure 4.3 shows a notional program schedule to accomplish
this effort. During the preliminary design task, the concept for the VSPT will be refined to the point
where all key aspects of the component and rig designs have been defined in sufficient detail to ensure
that no key risk items are likely to force substantive design changes during detailed design. This requires
that a comprehensive layout be produced, from which a bill of materials and parts list can be generated.
Preliminary aerodynamics will be defined for each blade and vane row, from which structural models will
be prepared. The aerodynamic, structural, and dynamic design of the blades, vanes, and other flowpath
elements needs to take into consideration the actual operating conditions the VSPT would see in operation
behind the gas generator, not just the relatively cold rig operating conditions, since it would do no good to
test a component design which has no chance of surviving the actual operating conditions in the real
engine. Rotordynamic analyses will be required as a part of the preliminary design in order to ensure that
sufficient speed and frequency margins can be obtained with the proposed configuration. For a power
turbine module that interfaces with the reduction gearbox directly rather than by extending a shaft through
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Figure 4.3.—Proposed Schedule for VSPT Experiment

the gas generator (e.g., PT-6 configuration) there is substantial freedom in the design and opportunity to
vary shaft characteristics and bearing spacing to achieve sufficient margins, so the risk of not achieving
acceptable margins is fairly low. To reduce risk, a Design Failure Modes and Effects Analysis (DFMEA)
will be conducted during preliminary design. This will help identify any potential failure modes and
define mitigation approaches early enough in the program so they can be incorporated into the design and
test plan.

The rig configuration will be driven by the requirements to obtain the key data for validating the
design, and by the interfaces with NASA’s single spool turbine facility. At the outset of the preliminary
design task, Substantial coordination with the NASA technical team will be required to define the
rig/facility interface requirements, as well as routing for instrumentation and secondary systems plumbing
and rig and facility safety requirements.

The lubrication and secondary air systems will also be defined in the preliminary design. For the rig, a
conventional jetted recirculating oil lubrication system will be used. Facility pumps will provide motive
flow and scavenge and these will be sized according to the predicted requirements of the rig across its
operating range of speed and power output. Purge air flow and pressure requirements for bearing
compartments and to prevent flowpath air ingestion will also be defined. The preliminary design effort is
expected to require 7 months to complete. At the conclusion of the preliminary design efforts, a
preliminary design review with the NASA technical team is planned.

Since all of the key characteristics of the VSPT component and rig design will have been defined in
Preliminary Design, the detailed design efforts will focus on substantiating the preliminary design
configuration via detailed modeling and analysis. The instrumentation and test plan will be finalized and
will be provided to NASA along with a 3-D external model of the test rig and all its secondary systems
and plumbing. Component aerodynamics will be finalized via detailed CFD, structural, and dynamics
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analyses, including transient analyses to define final operating and build tip clearances. If necessary due
to design changes, the rotordynamics model will be updated and exercised to finalize the design of the
rotary group and bearing system. Design release packages will be produced, comprising all the design and
manufacturing information needed to produce or procure the component and rig hardware. At the
completion of the detailed design task, a detailed design review will be held with the NASA technical
team. The DDR will include a review of the updated DFMEA based on the completed state of the design.

Once the DDR is approved, long lead hardware will be ordered and hardware fabrication will begin.
Since the rig and component hardware is primarily to be made of steel and aluminum, it is likely the only
long lead hardware may be the bearings. As a risk reduction approach, the rig can be designed around
bearings that are already in hand and available, or are known to be available on short lead. Fabrication of
rig and component hardware, as well as facility adaptive hardware, can be completed in 8 months, at
which time instrumentation and assembly of the rig will begin. The milestone for delivery of the
completed instrumented rig to the NASA test facility occurs at month 24.

A detailed test readiness and safety review will be conducted once the rig is installed at the test
facility. This review will address all aspects of rig operation and data collection, including a review of the
DFMEA.

Testing will begin at month 28 and will follow the approved test plan. Ideally, two sets of hardware
with slightly different aerodynamics will be tested back-to-back to bracket the design and provide data for
a sensitivity analysis. At completion of the test program, the rig and component hardware will be torn
down and assessed to determine if any conditions exist that may have affected the test data, such as tip
rubs or damage to any of the hardware or instrumentation. The test data will be reduced and analyzed and
compared to pre-test predicted maps. The maps used in the cycle model will be updated to reflect actual
performance and the mission analysis will be re-run to determine the effects of the status updates on the
overall mission performance.

The program schedule shows milestones for major reviews and on-site meetings at the test facility. A
final report will be compiled and submitted at month 36.

A ROM cost estimate for the proposed 36-month VSPT experiment program shown in Figure 4.3 is
$4.5M, broken down as follows:

Preliminary Design: $800,000

Detailed Design: $1,400,000

Component and rig hardware: $1,200,000
Testing: $300,000

Program management: $800,000

This ROM represents an estimate of contractor cost to perform the design, build the hardware,
conduct testing, and manage the effort. It does not include an estimate of costs for use of the test facility
and support from NASA and government service contractors. If it is determined that the VSPT test
components can be overhung directly from the facility bearing cartridge, eliminating the need for the
dedicated component bearings and lube system, the cost to design and build the components would be
reduced, and the total cost of the program could potentially be lower by as much as $200,000.

5.0 Conclusions

In this study, a variable speed power turbine design was executed for a proposed Large Civil
Tiltrotor. This application is unique in that it requires a turbine with far greater off-design capability than
traditional propulsion related gas turbines. Airfoil incidence can change as much as 60° between the high
speed and low speed rotor settings. These large changes in incidence cause airfoil separations and large
loading changes resulting in reduced efficiency. In order to address these large loading swings, a study
was performed in which a methodical multiple design-point process was used to arrive at a flowpath that
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is fundamentally speed insensitive. This is in direct contrast to other techniques such as variable geometry
or a variable gear ratio transmission. The figure of merit used in this study was to minimize the fuel burn
throughout the mission by weighting various performance conditions in such a way as to mimic a typical
flight. Various designs were analyzed and traded against each other with a turbine meanline code and
CFD calculations were used to validate the results. CFD consistently showed better negative incidence
tolerance (high speed) than the 1-D meanline loss systems. This finding would suggest moving the design
point selection to lower speed than the 1-D prediction. Any further research would require testing.

A component experiment program plan was proposed that can be accomplished within a 36-month
period. This program would design and fabricate a stand-alone rig to mate to the NASA GRC Single
Spool Turbine Test Facility and take advantage of its capabilities to run the testing at full scale for the
proposed LCTR application in an economical manner. A notional component test article design was
proposed that emulates the configuration recommended for the LCTR engine, and which greatly
minimizes rotordynamic issues that would be major concerns for alternative configurations.

The design methodology and technology investigated in this study can provide benefits to other
systems beyond the LCTR. Any system that can benefit from improved off-design performance, whether
turbofan, turboshaft, or turboprop, may be able to take advantage of the proposed approach to avoid the
complexity and cost associated with traditionally variable geometry approaches. This includes not only
aviation engines, but also ground power and automotive engines.
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Appendix B.—Definitions

AN? is an indicator of blade pull stress. This stems from the fact that the pull stress of a spinning
radial cylinder is proportional to AN?. A good rule of thumb is that blade stress will be proportional to
AN? at the rate of 10 ksi per 10E9 AN For example, a well designed turbine blade with nickel based
alloys operating at 50E9 AN? will have an average pull stress of about 50 ksi.

AN? = (Flowpath Annulus area in.?) X (rpm?)

Rim speed combined with AN? is an indicator of disk loading. Rim speed is calculated using the TE hub
radius.

Rim Speed(ft/s) = Radius y (in.)/12. * rpm *z / 30.

~ ~

> Annulus area calculated at TE

T Radius pup
—

rpm

Center Line

UV

Figure B.1.—Turbine AN, and Rim Speed Definitions
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Appendix C.—FlowPath Details

16.00 ¢

1z.00F

~L

Radsnof
High Cx/U
4 Stage
4.00 F
0.00 L L L L L J
-Z2.00 0.00 Z.00 4.00 6.00 g.0o 10.00
Axial
High CX/U
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4
53.8 8045 -3.29 73.34 68.62 69.34 91.39
69.2 10343 -7.88 88.33 84.71 84.12 88.62
84.6 12642 1.41 92.95 90.84 90.63 74.87
100.0 14941 23.20 91.25 91.58 92.80 57.42

%Speed Work Coeff. Flow Coeff.
54 1.68 0.813
100 0.5 0.448

Figure C.1.—High Cx/U Four Stage
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16.00

1200

Radsoof
Low Cx/U
4 Stage
4.00
0.0n 1 1 1 1 1 J
-z.00 0.0o Z.00 4.00 6.00 .00 10.00
Axial
Low CX/U
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4
53.8 8045 -2.22 69.98 66.62 69.30 90.20
69.2 10343 -7.80 87.58 83.60 82.85 89.14
84.6 12642 -1.84 92.00 89.60 89.44 78.75
100.0 14941 24.30 89.29 89.78 91.43 57.00
%Speed Work Coeff. Flow Coeff.
54 1.66 0.532
100 0.49 0.3

Figure C.2.—Low Cx/U Four Stage

NASA/CR—2012-217424 54



16.00

12.00

Rad3.00

3 Stage
4.00
0.00 L L L L J
0.00 2.00 4.00 6.00 g.0o 10.00
Axdal
3 Stg
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4
53.8 8045 -1.11 70.57 66.14 67.52 89.72
69.2 10343 -4.51 78.24 74.89 74.04 89.63
84.6 12642 -7.19 93.53 91.76 91.60 84.44
100.0 14941 -6.36 92.35 92.49 93.53 66.26

%Speed Work Coeff. Flow Coeff.
54 2.11 0.722
100 0.63 0.368

Figure C.3.—Three Stage
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12.00

12.00
e
—
10.00 _.__'_,_-"" m
8.00 |
Rad. L
1 L
—] --....J
.00 | —_ |
4.00 F
4 Stage
High Loading (1)
200
0.00 1 1 L L 1 L J
-2.00 -0.00 2,00 4.00 6.00 &.00 10.00
Axial
4 Stg Hi Loading (1)
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4

53.8 8045 -0.84
69.2 10343 -7.98
84.6 12642 -8.31
100.0 14941 -3.68

%Speed Work Coeff. Flow Coeff.
54 2.826 1.008
100 0.828 0.467

78.77 71.42
90.15 87.28
93.67 92.32
93.96 93.59

69.10 87.45
87.13 87.37
92.37 85.64
94.26 79.31

Figure C.4.—Four Stage High Loading (1)
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16.00 ¢

12.00 o B
]
]
.--""'# r
..-r’
Radz.oof
. _______J
"‘--.._-u-..,____-- L
.h-h
4 Stage
sk High Loading (2)
0.0 1 1 1 1
-4.00 0.00 4.00 5.00 121
Axdal
4 Stg Hi Loading (2)
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4
54.0 7000 3.62 76.30 65.58 63.81 85.34
69.3 8988 -6.27 89.07 85.79 86.38 85.44
84.7 10975 -8.11 92.90 91.62 92.32 85.12
100.0 12963 -7.29 93.67 93.29 94.31 83.67

%Speed Work Coeff. Flow Coeff.
54 3.116 0.832
100 0.919 0.377

Figure C.5.—Four Stage High Loading (2)
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14.00 ¢

20.00

1z2.00 F
10,00
Radg.oo | S
g00
6 Stage, High Cx/U
400 F
2.00 1 1 1 1 ] ]
-4.00 i i] 4.00 .00 1z.00 16.00
Anxdal
6 Stage A
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4
54.0 7000 1.01 69.66 63.25 64.03 89.39
69.3 8988 -6.27 87.12 83.61 82.71 87.05
84.7 10975 0.50 92.74 90.47 90.61 75.84
100.0 12963 20.42 92.19 92.22 93.34 59.02

%Speed Work Coeff. Flow Coeff.
54 2.031 1.037
100 0.611 0.541

Figure C.6.—SixStage High Cx/U
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—
.ﬂﬂ
12.00
Rad. J
\L
8.00 p
4.00
0.00 1 1 1 1 1 ]
0.00 2.00 4.00 6.00 8.00 10.00 12.00
Andal
3 Stage B
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4
54.0 6790 4.91 65.66 61.47 62.07 85.80
69.3 8718 -5.68 87.75 83.89 83.69 85.81
84.7 10646 -8.02 92.48 91.06 91.67 85.58
100.0 12574 -7.45 93.23 92.82 93.98 84.00

%Speed Work Coeff. Flow Coeff.
54 2.991 0.8423
100 0.966 0.4147

Figure C.7.—Three Stage B
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12.00 F

12.00

Rads.00 |
4 Stage, C
4.00 F
0.00 L L L J
-4.00 0.00 4.00 §.00
Axdal
4 Stage C
% Speed Design RPM Fuel Burn% ETA1 ETA2 ETA3 ETA4
54.0 6200 4.41 68.91 60.48 62.16 86.31
69.3 7960 -5.84 87.29 83.39 83.22 86.26
84.7 9721 -6.21 92.48 90.80 91.14 83.40
100.0 11482 0.60 93.00 92.65 93.82 74.85

%Speed Work Coeff. Flow Coeff.
54 2.925 1.09025
100 0.864 0.507

Figure C.8.—Four Stage C
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35

25 &N

N\

—04% Efficiency
Q3% Efficiency
92% Efficiency
91% Efficiency
90% Efficiency
—(R30% Efficiency
—88% Efficiency
—Qg7% Efficiency
m——=86% Efficiency
/ =ll=/ stg Hi Cx/U
==/ stg Low Cx/U
O3 Stage
==/ Stage Hi Loading (1)
O+ 4 Stage Hi Loading (2)

Work Coefficient

06 Stage A
O 3 Stage B
==/ Stage C
0 1
0.2 0.4 0.6 0.8 1 1.2
Flow Coefficient
Figure C.9.—Smith Curve of All Turbines
40.00
35.00
30.00 #=—tiigh CX/U Max(SLTO) RPM
== ow CX/U
25.00
X ==dr=3 Stg
3] ) .
© 4 Stg Hi Loading (1
g- 20.00 g 9 ()
IS =jé=/ Stg Hi Loading (2) /
c
5 —C—=
2 15.00 6 Stage A
T ==j==3 Stage B
L
S 10.00 ===/ Stage C
k)
= [Cruise RPM ]
2 o0 _~|Cruise RPM
0.00 A
-5.00
\,)V
-10.00 T T T T T T T T T 1
50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0

Design RPM

Figure C.10.—Design Speed Comparison: All Turbines
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Appendix D.—Four Stage CFD Analysis

The Four Stage power turbine presented in this study was analyzed using a Williams International
proprietary CFD code called VORTEX. VORTEX is a 3-D, finite volume, explicit time marching flow
solver. The solution assumes steady-state, time averaged flow. Each blade row is analyzed in the relative
frame using mixing planes to jump from rotating to stationary blade rows. The mixing planes assure
conservation of mass, momentum and energy. The performance used to analyze the turbine was based on
the mission point 4 (see Table 2.1 and Table A.4) with small modifications. Point 4 corresponds to a
54 percent speed cruise condition. The CFD uses a fictitious design point. To execute the design, point 4
is used for the thermodynamics, but the speed is increased to 75 percent. The pressure ratio was also
modified. The NPSS model had an efficiency at point 4 of 78.6 percent and an efficiency at point 3
(100 percent speed) of 84.9 percent. The predicted efficiency of this four stage is 86.54 and 90.74 percent
respectively which requires less PR in order to meet the power requirement. This would be a significant
rematch to the engine and would require additional cycle work, possible including a reduction in engine
core size. Below is a summary of the parameters used in the CFD as well as the cycle targets. The inlet
temperature and pressures shown are mass averaged values taken from the converged solution and differ
slightly from the targets. Typically the inlet profiles can be adjusted as the simulation/design matures to
hone in on the target values. The inlet mass flow is approximately 2.7 percent high which would require
closing airfoil throat areas to assure proper engine matching.

Cycle CFD
« PT 31.0 psia 30.93 psia
« TT 1749 °R 1696 °R
e Mdot 12.04 Ibm/s 12.37 Ibm/s
e rpm 11174 (75 percent speed)
« PR 6.18 5.6
« ETA 78.6 - 84.9 percent 92.9 percent *

! No leakage, cooling or tip clearance: MeanLine prediction = 93.55 percent @ PR = 5.78

The geometry used in the CFD did not have fillets between the airfoil and endwall intersection. The
following are surface static pressure loading plots of each stage. The vane and blade are plotted together:
Hub, Mean and Tip.
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D.3 Stage3
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Meanline Analysis of Design Point

75% Speed (11174 rpm)

Flow Parm. (Inlet) 16.240
Mass Flow 12.040
Efficiency 92.8662%
Flow Parm. (Exit) 76.472
Power (hp) 2684 .958
Pressure Ratio (Total/Total) 5.769
Pressure Ratio (Total/Static) 6.330
Inlet Temp. (degrees R / F) 1749.080 / 1289.410
TRIT (degrees R /7 F) 1749.080 / 1289.410
Exit TT (degrees R /7 F) 1165.389 7/ 705.719
Enthalpy Drop (BTU/1bm) 39.608
Ratio Specific Heats (Gamma) 1.340
Gas Constant (ft- Ibf/degR/Ibm) 53.374
Avg. Work Coefficient 1.459
Core Flow (lIbm/s) 12.040
Nozzle Cooling 0.000%
Rotor Cooling 0.000%
Rotor Summary:
Title Reaction WorkCoef Cm/U AN~2  RimSpeed
ROTOR: STAGE 1 48.000% 1.470 0.726 11.390 689.720
ROTOR: STAGE 2 47 .000% 1.490 0.563 18.720 671.266
ROTOR: STAGE 3 45_000% 1.496 0.551 27.121 617.638
ROTOR: STAGE 4 40.000% 1.384 0.702 32.240 567.395
Corrected Speed (rpm) 6085.02
(based on TRIT & 1st rpm found)
Vane Blade
Turning 58.1564 78.4812
85.9121 90.6473
92.4592 93.8363
88.4801 81.7638
RVR 2.0792 1.9532
2.0969 2.2366
2.4743 2.4077
2.4598 2.0300
Convergence Ratio 1.8046 1.6902
1.7790 1.8930
2.0383 1.9791
1.9660 1.6718
Reynolds #, SS/1000. 179.2235 152.0635
145.1666 126.1129
118.1032 93.2357
80.7626 59.2618
LE Mach # (relative) 0.2733 0.2985
0.2872 0.2673
0.2553 0.2647
0.2783 0.3262
TE Mach # (relative) 0.5824 0.5983
0.6181 0.6148
0.6509 0.6579
0.7092 0.6836
LE Swirl (relative) 0.0000 17.9747
-22.1197 24.7990
-25.4011 27.7528
-24.2202 23.9420
TE Swirl (relative) 58.1564 -60.3947
63.7159 -65.7272
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66.
64.

Total Loss %

NNNPE

Zweifel

Throat Area 37

Number of Airfoils

Exit Mach/Swirl (Absolute) 0.
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9995
2247

.4064
.0358
1774
.1681

-0569
.0437
.0391
.0225

.6309
.0312
.3542
.2492

-65.
.7576

-57

NNNPE

R R e

-42
-59

-131

9808

.9212
.1632
.3416
.2357

.0284
.0370
.0437
.0499

.5160
.0217
-1203
.8714
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Appendix E.—Meanline Results for Four Stage: High Loading 1
Rotor Summary at Design Speed of 54 percent:

Title Reaction WorkCoef Cm/U AN?  RimSpeed
ROTOR: STAGE 1 48.000% 2.826 1.072 5.902 496.707
ROTOR: STAGE 2 45.000% 2.840 0.857 9.700 483.381
ROTOR: STAGE 3 45.000% 2.863 0.880  14.081 444,190
ROTOR: STAGE 4 39.992% 2774 1224  16.650 410.626

Overall Efficiency = 87.5%

Rotor Summary @ Design Speed 100%:

Title Reaction WorkCoef Cm/U AN?  RimSpeed
ROTOR: STAGE 1 48.000% 0.834 0.539 20.240 919.819
ROTOR: STAGE 2 45.000% 0.848 0.416 33.265 895.143
ROTOR: STAGE 3 45.000% 0.851 0.402 48.287 822.569
ROTOR: STAGE 4 40.000% 0.778 0.512 57.098 760.413

Overall Efficiency = 94%

Airfoil Summary

54% Speed 100% Speed
Vane Blade Vane Blade
Turning 59.3261 101.7896 57.7106 51.4604
110.8252 114.7838 58.0856 58.7734
115.4375 116.0826 53.8484 56.6190
110.8802 100.6000 52.2701 50.9701
Vexit/Vinlet 2.2231 1.7296 2.0611 2.0179
1.6517 1.6362 2.2851 2.4019
1.8324 1.7477 2.6784 2.6977
1.7983 1.5571 2.6875 2.2304
Reynolds #, SS/1000. 192.2316 162.2900 176.8202 166.8413
147.8500 121.7398 160.8162 137.0289
112.3183 87.5698 136.1440 106.9008
73.1437 53.5719 94.8810 66.7247
LE Mach # (relative) 0.2730 0.3809 0.2730 0.2876
0.4105 0.4037 0.2644 0.2426
0.3843 0.4147 0.2332 0.2325
0.4390 0.5105 0.2532 0.2931
54% Speed 100% Speed
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TE Mach # (relative)

LE Swirl (relative)

TE Swirl (relative)

Total Loss %

Zweifel

Number of Airfoils

Exit Mach/Swirl
(Absolute)
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Vane Blade
0.6244 0.6770
0.6956 0.6769
0.7258 0.7479
0.8204 0.8226
0.0000 39.4746
-46.1872 48.9328
-48.6347 50.4989
-47.9455 44,9543
59.3261 -62.1228
64.5339 -65.7028
66.7344 -65.4703
62.8947 -55.5671
1.6196 3.4411
3.8016 3.8811
3.8187 4.4511
4.1192 5.0666
1.0550 1.0259
1.0657 1.0499
1.0641 1.0576
1.0377 1.0356
51 76

74 77

72 82

88 105
0.5549 -32.7647
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Vane Blade
0.5764 0.5956
0.6213 0.5993
0.6439 0.6480
0.7056 0.6759
0.0000 -9.0460
5.9468 -6.6781
13.3548 -9.6122
12.4835 -7.2519
57.7106 -60.5652
64.0554 -65.4882
67.2378 -66.2728
64.7740 -58.2441
1.3734 1.4617
1.5134 1.5536
1.6540 1.6506
1.6129 1.5247
1.0649 1.0237
1.0140 1.0355
1.0127 1.0284
1.0124 1.0190
52 50
50 49
45 49
49 56
0.3768 18.4055



Appendix F—Disk Sizing

A 2-D disk sizing tool was used to approximate disk mass and structural feasibility. Below is a screen
shot of disks that were designed based on achieving 25 percent over speed capability with typical disk
alloys. The resulting weight and mass moment of inertia of each disk plus the blades is shown.

14.00

12.00

—
_—
10.00 | //

Rad. a
-""'"--..H
""'--...______
.00 ——
4.00
29 Ibm
) 35 Ibm
200l 960 Ibm*in 33 Ibm
, 1250 Ibm*in?
1120 Ibm*in 34 |bm
11680 Ibm*in?
DDD 1 1 1 1 1 1 ]
—2.00 —0.00 200 4.00 B.00 5.00 10,00 1200
Axial

Figure F.1.—Approximate Disk Size
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Appendix G.—Efficiency and Reaction Definitions

The scope of this work is concentrated on understanding speed variations and the impact to turbine
efficiency. In order to simplify this understanding, the analysis presented in this report does not consider
cooling flows. This simplifies the efficiency definition. The efficiency numbers presented in this report
are calculated assuming ideal gas as follows.

ActualPower ATt

IdealPower Iy
Tin*{1-Prv

n

where:
Pr = Total Pressure at inlet / Total Pressure at outlet
ATt = Total Temperature at inlet — Total Temperature at outlet
Tin = Total temperature at inlet
v is the ratio of specific heats taken at the average of the inlet and exit Total Temperatures.

In this work, stage reaction refers to pressure reaction defined as the static pressure drop across the
rotor normalized by the static pressure drop across the whole stage.

. Ps —Ps
Re action = ( RotorLE RotorTE
SNozzleLE — IDSRotorTE
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Appendix H—NPSS Output for Critical Mission Point
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