Medication Storage and Protection System
Operational Concepts and Requirements

Aerospace Medicine Research Rotation
Final presentation
May 31 2013

By
Christian Iorio-Morin, Ph.D.
Intern NASA JSC/UTMB/Wyle
M.D. Candidate, Université de Sherbrooke
Sherbrooke, Canada

Under
Sharmila D. Watkins, M.D., M.P.H.
Element Scientist
Exploration Medical Capability
NASA Human Research Program

www.nasa.gov
Context

Risk

- Risk of Unacceptable Health and Mission Outcomes Due to Limitations of In-flight Medical Capabilities

Gap

ExMC 4.17

- Lack of adequate protection for medications to preserve stability and shelf life in exploration class missions
Medication use on STS and ISS

- Most frequent medical complaints:
 - Space Motion Sickness
 - Headaches
 - Sleep disturbance
 - Back pain
 - Nasal congestion

- ISS CHeCS Medical Kit (2008): 120 medications
 - 54 solid formulations (tablets, capsules)
 - 11 semi-solid formulations (creams, ointments)
 - 34 liquid formulations in bottles
 - 19 liquid injectable formulations
 - 2 inhalers
Medication shelf life
About medication stability

- **Chemical**
 - Chemical integrity and potency of active ingredient

- **Physical**
 - Appearance, dissolution, suspendability

- **Microbiological**
 - Resistance to microbial growth

- **Toxicological**
 - No increase in toxicity
Medications do expire

Stability Profiles of Drug Products Extended beyond Labeled Expiration Dates

ROBBE C. LYON,1 JEB S. TAYLOR,1 DONNA A. PORTER,2 HULLAHALLI R. PRASANNA,3 AJAZ S. HUSSAIN3

1Division of Product Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, HFD-941, White Oak, Life Sciences Building 64, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993-0002
2Division of Field Science, Office of Regional Operations, Office of Regulatory Affairs, Food and Drug Administration, Rockville, Maryland 20857
3Vice President & Global Head of Biopharmaceutical Development, Sandoz, 506 Carnegie Center, Princeton, New Jersey 08540

Received 6 January 2006; accepted 17 March 2006
Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jps.20636
About medication stability

- Some expired medications are ineffective
- Some expired medications are toxic

<table>
<thead>
<tr>
<th>Ineffective</th>
<th>Toxic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin + Clavulanate</td>
<td>Ibuprofen</td>
</tr>
<tr>
<td>Mupirocin</td>
<td>Gabapentin</td>
</tr>
<tr>
<td>Levothyroxin</td>
<td></td>
</tr>
<tr>
<td>Epinephrine</td>
<td></td>
</tr>
<tr>
<td>Risedronate</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Context

Risk • Risk of Unacceptable Health and Mission Outcomes Due to Limitations of In-flight Medical Capabilities

Gap ExMC 4.17 • Lack of adequate protection for medications to preserve stability and shelf life in exploration class missions

Task • Development of methods/technologies for protecting medications in spaceflight

Deliverable • TRL 6 system to preserve stability and shelf life of medications

Medication Storage and Protection System (MSPS)
Project goals

Identify factors affecting medication stability
↓
Generate operational concepts for MSPS
↓
Write functional requirements for MSPS
↓
Draft verification requirements for MSPS
Factors affecting medication stability

- Water content variation
- Temperature
- Light
- Ionizing radiations?
- Oxygen exposure
- Microbial contamination
- pH
Water content variation

Medication degradation rate

\[\ln k = \ln A - \frac{E_A}{RT} + B(RH) \]

Critical relative humidity

<table>
<thead>
<tr>
<th>Excipient</th>
<th>CRH at 20°C</th>
<th>CRH at 40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dextrose</td>
<td>100</td>
<td>88</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>80</td>
<td>69</td>
</tr>
<tr>
<td>Sucrose</td>
<td>86</td>
<td>83</td>
</tr>
<tr>
<td>Xylitol</td>
<td>91</td>
<td>73</td>
</tr>
<tr>
<td>Tartaric acid</td>
<td>84.5</td>
<td>78</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>84</td>
<td>82</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Sodium citrate</td>
<td>60.5</td>
<td>78</td>
</tr>
<tr>
<td>Polyethylene glycol (PEG3350)</td>
<td>94</td>
<td>85</td>
</tr>
<tr>
<td>Sodium carboxymethylcellulose</td>
<td>84</td>
<td>84</td>
</tr>
</tbody>
</table>

Environment

Headspace

Acetaminophen
Acetylsalicylic acid
Semi-solids
Liquids
Water content variation

Moisture vapor transmission rate

Table 5. Representative Moisture Vapor Transmission Rates (MVTR) for a Number of Pharmaceutical Packages

<table>
<thead>
<tr>
<th>Package</th>
<th>Package Size</th>
<th>MVTR (mg/day), 23°C/75%RH</th>
<th>MVTR (mg/day), 40°C/75%RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE</td>
<td>40 cm³ bottle¹</td>
<td>0.15</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>60 cm³ bottle</td>
<td>0.262</td>
<td>1.352</td>
</tr>
<tr>
<td></td>
<td>180 cm³ bottle</td>
<td>0.521</td>
<td>2.688</td>
</tr>
<tr>
<td>Polyvinylchloride (PVC) blister (250 μm thick)</td>
<td>23.9 × 9.5 × 8.2 mm capsule</td>
<td>1.187</td>
<td>3.885</td>
</tr>
<tr>
<td></td>
<td>13.3 × 7.5 × 4.4 mm capsule²</td>
<td>0.259</td>
<td></td>
</tr>
<tr>
<td>Polyvinylidene chloride (PVDC) blister (190 μm thick)</td>
<td>23.9 × 9.5 × 8.2 mm capsule</td>
<td>0.230</td>
<td>1.200</td>
</tr>
<tr>
<td>Polychlorotrifluoroethylene (PCTFE), Aclar™ UltRx 2000 blister</td>
<td>23.9 × 9.5 × 8.2 mm capsule</td>
<td>0.028</td>
<td>0.142</td>
</tr>
<tr>
<td></td>
<td>14.5 × 0.3 mm round</td>
<td>0.013</td>
<td>0.100</td>
</tr>
<tr>
<td>Polychlorotrifluoroethylene (PCTFE), Aclar™ UltRx 3000 blister</td>
<td>23.9 × 9.5 × 8.2 mm capsule</td>
<td>0.018</td>
<td>0.103</td>
</tr>
<tr>
<td></td>
<td>14.5 × 0.3 mm round</td>
<td>0.007</td>
<td>0.062</td>
</tr>
<tr>
<td>Polychlorotrifluoroethylene (PCTFE), Aclar™ RX160 blister (305 μm thick)</td>
<td>13.3 × 7.5 × 4.4 mm capsule²</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Foil-foil cold-formed blister</td>
<td>23.9 × 9.5 × 8.2 mm capsule</td>
<td>0.00067</td>
<td>0.0037</td>
</tr>
<tr>
<td></td>
<td>13.3 × 7.5 × 4.4 mm capsule²</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

The MVTR values were determined using gravimetric changes for each container according to USP24/NF18 at 23°C, and modified accordingly for 40°C.
Water content variation
Temperature

- Definitions:

 Cold: <8°C
 Cool: 8-15°C
 Controlled Room Temperature: 15-30°C, mean <25°C

- Some medications have specific requirements
Light

- < 200 nm → Absorbed by air
- 320-350 nm (UV) → Maximal medication sensitivity
- > 800 nm → Heat transfer
- 44% of solid medications in CHeCS are light-sensitive
Ionizing radiations

- Solar Particle Events (SPE)
- Galactic Cosmic Rays (GCR)

Effective shields: water, polyurethane
Oxygen

Fig. 6. Observed degradation as a function of oxygen concentration (formulation A).
Microbial contamination
pH
Solutions on earth

- Packaging
 - Blister packs
 - Amber-coloured containers
- Storage environment
- Repackaging
Current NASA practice

- Medications repackaged in plastic bags
- Stored in Nomex cases within CHeCS
Extending shelf life

- Temperature
- Moisture
- pH
- Oxygen
- Microbes
- Light
- Radiations
Extending shelf life

Moisture
- 1x
 - Relative humidity <40%

Light
- 1-1.25x
 - Complete protection between 200 nm and 800 nm during storage
 - Partial protection between 290 nm and 450 nm during access

Temperature
- 2-4x
 - Mean storage temperature between 8°C and 15°C

pH
- 1x
 - Standard USP packaging requirements

Microbes
- 1-1.25x
 - Protection from oxygen contact

Oxygen
- 1x?
 - Shielding from solar particle events
 - Shielding from galactic cosmic rays

Radiations
Stability assessment

• Non-destructive

• 3 strategies:

 Visual inspection

 Raman spectroscopy

 Near-infrared spectroscopy
Other requirements

- Fast access
 - < 60 seconds (nominal)?
 - < 30 seconds (emergency)?
- Ability to repackage opened medications
- Integration with the Medical Consumables Tracking system
The next steps

- Requirements review
- Design
- Testing
 - Ground verification
 - ISS test run
Beyond MSPS

Mission to Mars

- Shelf life = 2 years
- 4x distribution
- 2.5x shelf life extension

1 year

Mission to Mars

- Shelf life = 2 years
- 4x distribution
- 2.5x shelf life extension

1 year
Thanks

- Dr Sharmila Watkins
- Dr Virginia Wotring
- Tianna Shaw
- Elisca Hicks
- Yvette Schulz
- Dr Raffi Kuyumjian
- Dr David Saint-Jacques