International Space Station (ISS) External High Definition Camera Assembly (EHDCA)

In-Space Inspection Technology Workshop
July 16, 2014

Victor Studer
Avionic Systems Division
External High Definition Camera Overview

- International Space Station (ISS) program requested Engineering to provide an external high definition (HD) video capability to view Earth and ISS.
 - Integrated as part of the ISS Communications and Tracking System
 - Directional pointing provided by the Pan and Tilt Unit (PTU) of the External Television Camera Group (ETVC)
 - Receives commands and sends imagery, health and status through the External Wireless Communications (EWC) system.
 - Electrical power is from sharing ISS supplied power to the Video Camera Luminaire (VCL) heaters (120VDC).
 - EHDCA can be installed either IVA or during EVA.
 - Control of the EHDCA is from the Mission Control Center (MCC)
 - Commercial Off the Shelf (COTS) hardware based.

Figure 1: ETVCG Assembly w/EHDC
EHDCA Installation Locations

- Flight units to be installed at each camera port location – CP3, CP8, CP9 and CP13

Figure 2: ISS Camera Port Locations
External High Definition Camera Overview

EHDCA Constraints/Requirements
- Weight and volume limits (< 30 lbs and limited envelope)
- EVA compatible for installation and removal.
- Power Limit <248 watts (later lowered to ~200w)
- Provide standard (NASA-STD-2818) HD Video (720P60)
- Controllable zoom lens
- Provide minimum of 2 years of operational life
- Conform to EWC wireless Ethernet based communications (802.11n, 5.2 GHz) WiFi compatible system through the ISS Joint Station LAN (JSL)
- H.264 compression with MPEG2 transport stream HD video
- Must provide high quality HD video views of ISS and Earth, inspection is not a requirement of this system

EHDCA Goals
- Provide imagery if Airlock, HTV Capture and Node 2 Nadir activities (RF coverage)
- KX/Imagery Analysis Group provided list of Desirements
 - Provide ‘wide’ field of view zoom of 5° to 75°
 - Provide 2 - 4 pixels/0.1 inch resolution at 267.5 feet (Camera/Lens selection)
 - 1280 x 720 pixel HD resolution this equates to ~ 1.2 degree Horizontal Field of View (HFOV).
 - Automatic control (iris, focus, gain, white balance etc.) with manual override
 - Metadata & telemetry downlink
 - Three chip sensor system camera (no Bayer pattern)
EHDC Architecture

EHDC Integrated System Architecture

• EWC compatible radio and antennas operating in Client mode
 – EWC Wireless Access Point (WAP) radio couldn’t be used
 – New radio had to be qualified for EHDC (Boeing provided)
 • Based on Moxa AWK-4131 radio
 • Ruggedized and updated firmware to increase power output over standard model
 – Circular polarized, wide beam, small, 5.3 GHz antenna required

• Camera & Lens selection trade study
 – Ethernet based control was significant factor in trade
 – 720P60 high definition video output required
 – Size, Weight and Power (SWAP) limitations

• Controller for system control and status.
• Video Compression Encoder – Selected H.264 encoder recently certified for ISS internal use
• Ethernet Switch – Internal Ethernet interconnections.
EHDC Ethernet Based Architecture

- EWC drove need for an Ethernet based integrated video and communications architecture

Figure 3 – EHDC Ethernet Based Architecture
Figure 4 – Simplified CAD model of ETVCG and EHDC Locations
Key to success of EHDC depends entirely on our RF coverage in conjunction with EWC

- **External Wireless Communications (EWC) Background**
 - EWC Myers antenna test data shows irregular coverage.
 - EHDC camera locations show positive signal margins for 10 Mbps communications - just.
 - EWC antennas are linearly polarized, EHDC antennas had to be circularly polarized (-3dB loss)

Figure 5 – EWC RF Coverage Analysis
EHDC Architecture – Wireless Antenna Coverage

• EHDC cameras will have nearly spherical imagery coverage thanks to the ETVCG’s Pan and Tilt Unit.

• RF coverage is limited by mounted antennas which will move with the EHDC.
 – Antenna selection based on trade study and test of commercial antennas – best antenna gain limited to ~ +/- 30 degrees off axis, limited gain below.
 – Unique ground plane designed to improved overall coverage.
 – Antennas must be circularly polarized to work with EWC linearly polarized antennas.

Figure 6 – Various Pan and Tilt Configurations
EHDC Architecture – Wireless Antenna Coverage

• EHDC Antenna selection/design – Antenna selection restricted to available COTS
 – Selected Tecom Cavity-Backed Spiral – Nominal 70 degree beam.
 – Beam shape depends on associated ground plane.
 – Significant study, design, analysis and testing effort went into the final ground plane geometry.
 • Optimized gain and axial ratio

Figure 7: Tecom Antenna

Figure 8: Final Ground Plane Geometry

Figure 9: Ground Plane Design RF Coverage
EHDC Architecture – Wireless Antenna Coverage

- EHDC housing structure effects on antenna RF Coverage.
 - Upper Antenna mounted to flat EHDC upper lid

Figure 10 – Upper Antenna Mount

Figure 11 – Upper Antenna Measured RHCP Gain

Figure 12 – Upper Antenna 3D Contour Plot
EHDC Architecture – Wireless Antenna Coverage

- EHDC housing structure effects on antenna RF Coverage
 - EHDC Lower antenna mounted to irregular lower housing structure

Figure 13 – Lower Housing Antenna Mount

Figure 14 – Lower Housing Antenna Measured Gain

Figure 15 – Lower Antenna 3D Contour Plot
Camera/Lens Trade Study Results

- Extensive market trade study, camera evaluation and tests performed
 - Broadcast quality 3 chip box cameras and associated lenses exceed limits
 - Smaller ‘Professional’ 3 chip cameras underperformed and/or failed radiation testing
 - Inspection/security cameras not compatible with broadcast standards
 - DSLR camera/lenses at upper SWAP limit but none provided adequate external control capabilities
 - Nikon D4 camera undergoing testing as the next EVA camera with extensive USB control interface, Ethernet and HDMI interfaces available but with limited functionality
 - Long history of good working relationship with Nikon
 - Nikon believed camera firmware updates could be made to meet our Ethernet control and HDMI output requirements
 - All controls required for camera operation could be controlled remotely
 - Radiation performance acceptable
 » ~95 percent of damaged pixels anneal with time
 » Expected life due to permanent damage should exceed 2 – 4 year planned EHDC operational life
 - Other DSLR cameras required manual switch activations for basic operations
 - External zoom lens drive would have to be added for any DSLR
 - DSLR cameras have known video performance deficiencies and few fine adjustments normally found on professional video cameras
 - DSLR’s are used extensively for television and cinema productions
EHDC Camera

• Nikon D4 DSLR with 28-300mm lens & 2X teleconverter selected as EHDC camera.
 – Selection based on criteria established by user community, ISS program and engineering
 – Final selection made after ‘Camera Summit’ with demonstrations of top candidate cameras
 – Nikon provided firmware updates solved original limitations.
 – 1280 x 720 progressive video mode uses slightly less than full image sensor
 • Video pixels integrated across 9 Bayer pattern sensor pixels
 – 16.2MP sensor, still camera limited to 13.6 MP (4928 x 2768 pixel) in 16:9 movie mode
 – Auto and manual focus provided through EHDC control system
 – Sensitivity ISO 100-12800 range plus extended EV settings (-.3 & +4 EV) giving ISO 50 – 204800
 – Control of all camera functions is through Ethernet port allowing full remote control
 – Camera provides LiveView mode with low data rate imagery provided through Ethernet port
 • Allows operators to view still or video imagery prior to downlink
 • Expanded view up to full resolution of sensor
 • Downlink video imagery is same as low data rate LiveView
 – External stepper motor zoom lens drive controlled through EHDC controller
 • 56 – 600 mm zoom lens gives ~ 3.4 – 36 degree horizontal field of view
 • Focus drive controlled through camera

• EHDC Control software developed for MCC operators
 - Allows full camera control, video and still picture downlinks.
 - Provides EHDC system telemetry including EWC received signal strength

Figure 16: D4 Camera w/Lens
EHDC Architecture

- Remaining EHDC Components
 - Controller – Off the shelf ASD Modular Instrumentation design
 - Power control –
 - Allows operator control to reset power to components in event of detected SEU
 - Controls standby mode (camera & encoder turned off)
 - Status telemetry (temperature, pressure, currents)
 - Watchdog timer
 - Control camera zoom lens function
 - Video Encoder
 - Visionary Solutions Incorporated (VSI) AVN443HD Encoder
 - HD H.264 encoding bit rate range 5 – 20 Mbps
 - Nominally set to 8 Mbps encoding
 - Provides standard MPEG 2 Transport Stream
 - Power Supply – 120 V power is always on
 - Power shared with Luminaire heater power
 - Primary power supply 120 VDC to 24 VDC
 - Secondary board provides separate power supplies for each component
 - Heaters
 - Thermostat controlled
 - 120 VDC direct from input power

Figure 17: EHDC Block Diagram
EHDC Architecture - Enclosure

- EHDC incorporated a sealed enclosure to better protect the components
 - Dry nitrogen filled to 1 atmosphere
 - Minimize COTS component off-gassing
 - Provides better thermal control over vacuum
 - Required use of an optical window
 - Optical quality ¼” Fused Quartz
 - Anti-reflective coating on each surface
- Enclosure designed around internal components, external clearance zones, EVA installation requirements and weight limitations.
 - EVA installation/removal
 - Blind mate to current camera’s side slide rail
 - EVA compatible power connectors
 - EVA compatible interfaces (Microconical & tether loop)
 - 3D printed window and internal lens shrouds
 - Machined aluminum housing
 - Thermal reflective tape on all surfaces
 - Final weight 28.25 lbs.

Figure 18: EHDC Assembly
EHDC Internal Design

• Internal Packaging
 – Camera, lens, zoom lens motor drive, power supply, controller mounted on ‘doghouse’

Figure 19: EHDC Camera Mount
EHDC Internal Design

- Internal Packaging
 - Doghouse assembly, encoder, switch, radio, antennas, cabling incorporated in overall EHDC assembly

Figure 20: EHDC Assembly
EHDC Performance

• End to end camera video/encoder performance
 – Video resolution measured at Usable and Limiting values
 • Worse case (600 mm telephoto) usable resolution ~ 600 TV Lines/picture height
 • Limiting resolution ~ 690 TV Lines/picture height
 – Still imagery resolution > 2000 lines
 – Optical window has very little effect on image resolution
 • Small degradation at 600 mm, effect is greater in still imagery mode
 • Not noticeable in video mode

• Low light level operation
 – Required to work with ISS ETVCG mounted Luminaire – Specified to provide 3 foot-candle at 60 feet
 – Video low light performance limited by 1/60 sec frame rate – ISO 12800 +4EV creates grainy, noisy video image at 3fc and lower
 – Still image capture at longer integration time and optimal settings operates well below 3 fc
EHDC Performance

- Low light level still imagery

Figure 21 - 32 Lux (~3fc) Lab Image

Figure 22 - 11 Lux (~1fc) Lab Image
Flight and Installation Schedule

• 2 ORUs and Cables on Orb-4
 – SpX7 BU flight
 – Support EVA D, Install CP8 & CP13 (April, 2015)

• One unit on SpX7
 – No BU Flight
 – Support EVA E-1 (June, 2015)

• One unit on SpX8
 – Orb-5 BU flight
 – Support EVA E-2 (July, 2015)