NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(−2) DU(−1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(−2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport. Climate change has relatively small impacts on global mean tropospheric ozone RF.
Document ID
20140011862
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Stevenson, D.S.
(Edinburgh Univ. United Kingdom)
Young, P.J.
(National Oceanic and Atmospheric Administration Boulder, CO, United States)
Naik, V.
(National Oceanic and Atmospheric Administration Princeton, NJ, United States)
Lamarque, J.-F.
(National Center for Atmospheric Research Boulder, CO, United States)
Shindell, D. T.
(NASA Goddard Inst. for Space Studies New York, NY, United States)
Voulgarakis, A.
(Imperial Coll. of London London, United Kingdom)
Skeie, R. B.
(Center for International Climate and Environmental Research Oslo, Norway)
Dalsoren, S. B.
(Center for International Climate and Environmental Research Oslo, Norway)
Myhre, G.
(Center for International Climate and Environmental Research Oslo, Norway)
Berntsen, T. K.
(Center for International Climate and Environmental Research Oslo, Norway)
Folberth, G. A.
(Meteorological Office Bracknell, United Kingdom)
Rumbold, S. T.
(Meteorological Office Bracknell, United Kingdom)
Collins, W. J.
(Meteorological Office Bracknell, United Kingdom)
MacKenzie, I. A.
(Edinburgh Univ. United Kingdom)
Doherty, R. M.
(Edinburgh Univ. United Kingdom)
Zeng, G.
(National Inst. of Water and Atmospheric Research Lauder, New Zealand)
vanNoije, T. P. C.
(Royal Netherlands Meteorological Inst. De Bilt, Netherlands)
Strunk, A.
(Royal Netherlands Meteorological Inst. De Bilt, Netherlands)
Bergmann, D.
(Lawrence Livermore National Lab. Livermore, CA, United States)
Cameron-Smith, P.
(Lawrence Livermore National Lab. Livermore, CA, United States)
Plummer, D. A.
(Environment Canada Victoria, British Columbia, Canada)
Strode, S. A.
(Universities Space Research Association Columbia, MD, United States)
Horowitz, L.
(National Oceanic and Atmospheric Administration Princeton, NJ, United States)
Lee, Y. H.
(NASA Goddard Inst. for Space Studies New York, NY, United States)
Szopa, S.
(Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette, France)
Sudo, K.
(Nagoya Univ. Nagoya, Japan)
Nagashima, T.
(National Inst. for Environmental Studies Ibaraki, Japan)
Josse, B.
(Centre National de la Recherche Scientifique Annecy-le-Vieux, France)
Cionni, I.
(Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile Bologna, Italy)
Righi, M.
(Deutsches Zentrum fuer Luft- und Raumfahrt e.V. Oberpfaffenhofen, Germany)
Eyring, V.
(Deutsches Zentrum fuer Luft- und Raumfahrt e.V. Oberpfaffenhofen, Germany)
Conley, A.
(National Center for Atmospheric Research Boulder, CO, United States)
Bowman, K. W.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Wild, O.
(Lancaster Univ. United Kingdom)
Archibald, A.
(Cambridge Univ. Cambridge, United Kingdom)
Date Acquired
September 17, 2014
Publication Date
March 15, 2013
Publication Information
Publication: Atmospheric Chemistry and Physics
Publisher: Copernicus Publications
Volume: 13
Issue: 6
Subject Category
Meteorology And Climatology
Report/Patent Number
GSFC-E-DAA-TN9155
Funding Number(s)
WBS: WBS 281945.02.31.02.52
CONTRACT_GRANT: DOE DE-AC02-05CH11231
CONTRACT_GRANT: NNG11HP16A
CONTRACT_GRANT: DOE DE-AC52-07NA27344
Distribution Limits
Public
Copyright
Public Use Permitted.
Keywords
climate change
troposphere
nitrogen oxide
ozone
radio frequencies
methane
No Preview Available