Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

Dr. Jeffrey West, NASA Marshall Space Flight Center, Lead
Dr. Doug Westra, NASA Marshall Space Flight Center, Presenting
Brian R. Richardson, Qualis/ESSSA
Paul K. Tucker, NASA Marshall Space Flight Center
The Power of Rocket Engines

The 3 Space Shuttle Main Engines (SSMEs) are Liquid Rocket Engines and had a combined thrust of over 1.2 Million Pounds at Lift-off. With the Solid Rocket Boosters, total thrust was nearly 7 Million Pounds at Lift-off.

The 5 F-1 Liquid Rocket Engines on the Saturn V Moon Rocket had a combined thrust of over 7.5 Million Pounds at Lift-off.

The Space Launch System will have a Combined Thrust of over 9.2 Million Pounds at Lift-off.
The Power of Rocket Engines

The 3 Space Shuttle Main Engines (SSMEs) are Liquid Rocket Engines and had a combined thrust of over 1.2 Million Pounds at Lift-off. With the Solid Rocket Boosters, total thrust was nearly 7 Million Pounds at Lift-off.

The 5 F-1 Liquid Rocket Engines on the Saturn V Moon Rocket had a combined thrust of over 7.5 Million Pounds at Lift-off.

The Space Launch System will have a Combined Thrust of over 9.2 Million Pounds at Lift-off.
Rocket Engines: Simple Principle
Newton’s Third Law of Motion

Newton’s Third Law of Motion: For every action there is an equal and opposite reaction.

Aqua-Man Wannabe
Propelled by Jet-Ski Water Exhaust

Space Shuttle Propelled by High-Velocity Combustion Gas
Liquid Rocket Engine Design

- Simple Principle (Newton’s Laws of Motion)
- Very Complex Design is Required

  - Large Tanks filled with Liquid Oxygen (LOX), and Liquid Fuels
  - Extremely Complex Turbo-Machinery and Plumbing
    - Turbines and Pumps that spin > 30,000 RPM

- **Thrust Chamber Assembly**
  - Where oxidizer and fuel mix and combust
  - Extreme Temperature and Pressures, High Velocity and Complex Flow

Escaping Earth’s Gravity and Space Travel

[Diagram of rocket engine with labels for fuel, LOX, and other components]
Escaping Earth’s Gravity and Space Travel

Liquid Rocket Engine Design

- Simple Principle (Newton’s Laws of Motion)
- Very Complex Design is Required
  - Large Tanks filled with Liquid Oxygen (LOX), and Liquid Fuels
  - Extremely Complex Turbo-Machinery and Plumbing
    - Turbines and Pumps that spin > 30,000 RPM
- **Thrust Chamber Assembly**
  - Where oxidizer and fuel mix and combust
  - Extreme Temperature and Pressures, High Velocity and Complex Flow
Liquid Rocket Engine Design

- Simple Principle (Newton’s Laws of Motion)
- Very Complex Design is Required
  - Large Tanks filled with Liquid Oxygen (LOX), and Liquid Fuels
  - Extremely Complex Turbo-Machinery and Plumbing
    - Turbines and Pumps that spin > 30,000 RPM
- Thrust Chamber Assembly
  - Where oxidizer and fuel mix and combust
  - Extreme Temperature and Pressures, High Velocity and Complex Flow

Escaping Earth’s Gravity and Space Travel
Liquid Rocket Engine Design

- Simple Principle (Newton’s Laws of Motion)
- Very Complex Design is Required
  - Large Tanks filled with Liquid Oxygen (LOX), and Liquid Fuels
  - Extremely Complex Turbo-Machinery and Plumbing
    - Turbines and Pumps that spin > 30,000 RPM
- Thrust Chamber Assembly
  - Where oxidizer and fuel mix and combust
  - Extreme Temperature and Pressures, High Velocity and Complex Flow

Escaping Earth’s Gravity and Space Travel
Thrust Chamber Assembly Components

Thrust Chamber Assembly

Combustion Chamber

Injector with Hundreds of Elements

Nozzle
Combustion Anomalies in Thrust Chamber
Leads to Damage or Complete Destruction

- **Combustion Instability**
  - Characterized by Pressure peaks and temperature spikes
    - Often Un-predictable
  - Driven by Injector Design and Flow Conditions
  - It is very costly to have an anomaly on the Test Stand and then re-design
  - Therefore, NASA is very driven to use and continually improve predictive tools that can aid in the design process prior to expensive testing

**Surface Degradation and Cracking of Chamber Walls**

Main Injector Failure

NASA invests in simulation tools that can help Avoid the Time-Consuming and Costly “Test-Fail-Fix” Cycle
Modeling of One Injector Element with a CFD* Tool

Simplified Schematic of Physics Occurring in the Thrust Chamber in and Near the Injector

Typical Temperature Results

* - CFD stands for Computational Fluid Dynamics
Modeling of Seven (7) Elements to Support an Advanced Booster Rocket Engine Design – Using CFD*

• **Modeling with a CFD Tool**
  - The CFD results were used by Rocket Engine designers to fine-tune the initial design for performance and stability.
  - The CFD provided design data and assessment of stability:
    - This data is normally obtained by testing.
    - CFD simulations provided more data, more quickly, at a lower cost.
  - Simulation results include time-varying temperature and pressure predictions, and combustion metrics.

- CFD stands for Computational Fluid Dynamics
- The CFD tool used is called Loci/STREAM

---

Surface of Constant Value for Ideal Combustion

Flow Direction

Mass Fraction of Combustion Products
Why High-End Computing Matters

• Access to Pleiades Super-Computers was a Game-Changer in the Design of this Advanced Booster Engine

- The CFD simulations required large meshes ranging from 100-350 million cells
  - Physical laws represented by complex mathematical equations are enforced in every cell
- Time-Steps on the order of 1 micro-second (1.0 X 10^{-6} seconds) were used
- Simulations were normally executed in under 2 weeks using 2000-4000 processors
- This quick turn-around enabled the CFD tool to be used in a design cycle with multiple iterations occurring in a relatively short time period

As NASA seeks to reduce the cost of access to space, CFD tools and the super-computing resources required for CFD will continue to be developed for higher fidelity and accuracy and will become an increasingly crucial part of the engine design cycle

* - CFD stands for Computational Fluid Dynamics