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Introduction
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 Fire is a significant hazard to both crew and vehicle on 
exploration missions

 On long-duration missions abandoning the vehicle and a rapid 
return to earth are not possible

 Fire requires fuel, oxidizer and an ignition source
 All three present by necessity on manned spacecraft

 Large-scale fires are very complex:
 Turbulent, chemically reacting flow
 Complex chemical kinetics involving large hydrocarbon molecules, solid 

and gas phases and chlorinated or fluorinated species



Uniqueness of Microgravity
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 Flame characteristics and 
flammability limits change
 Low-speed, sub-buoyant flows
 Normal gravity testing not 

necessarily worst-case

 Particulate size and transport 
changes
 Terrestrial standards for detection 

not necessarily applicable

 Small, sealed, confined volume 
with limited egress

 Terrestrial large-scale fire models and experiments are of limited 
utility
 Upcoming Saffire experiments are largest to date in microgravity

 Must rely on numerical models validated and calibrated against 
the very limited experimental data



Overall FPDS Approach
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Develop a comprehensive modeling 
capability
1. Large Eddy Simulation (LES) CFD 

models:
 Builds off of efforts to model ISS fire 

detection
 Detailed treatment of flow inside the 

vehicle
 Computationally intensive for realistic 

spacecraft configurations involving 
chemically reacting flows

2. Lumped Capacity Models (LCM):
 Builds off of efforts to estimate 

survivable fires for spacecraft
 Not as detailed as LES, but more 

amenable to parametric studies

Microgravity

Normal Gravity
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Lumped Capacity Models (LCM)
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 Treat the spacecraft volume as a single ‘zone’
 Can be extended to multiple zones

 Assume each zone has a uniform temperature  and species 
concentration

 Solve for energy and species conservation in each zone with a 
prescribed fire

 Creates a system of ODEs quickly solved by a range of open-
source and commercial solvers



Base Case Comparison

 Empty, sealed 
cubic volume 3 m
on a side

 Prescribed heat 
input

1. Adiabatic wall
 All energy 

transferred to gas

2. Isothermal wall
 Heat transfer to the 

wall
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• t2 growth first 34 s ( = 5.1 x 10-3 kW/s2)
• Constant fire for next 126 s
• Linear decay to 0 for 10 s
• Approximates expected profile from Saffire I



Base Case – Adiabatic Walls
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Base Case – Isothermal Wall
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Detailed Computation - Saffire

 Saffire experiment will be conducted in Orbital Cygnus 
Pressurized Cargo Module after de-mating from ISS (still in LEO)

 Use FDS to simulate the flow and heat transfer in the PCM while 
the large fuel sample is burned in Saffire
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Initial Conditions Simulation Conditions FDS Parameters
20 C Isothermal Shell 20 C Radiative Frac = 0
1.0 atm Adiabatic Solid Objects Suppression OFF
Air (0.21/0.79) Heat Release at 30 s Radiation OFF

Fuel Mass = 0.0541 kg Stratification OFF
Saff. Flow = 0.104 m3/s Gravity OFF
ECLSS = 0.0524 m3/s
Gas Vol. = 10.6 m3

 Observe flow and heat transfer in realistic Saffire/PCM 
configuration



FDS Configuration - Saffire
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CAD Shell
(partial shown)

CAD Cargo Pallet 
(FWD Bay 1)

BC: adiabatic surface

Environmental Control and Life 
Support System (ECLSS)

BC: adiabatic surface

Disposal Cargo
(FWD-PORT standoff)
BC: adiabatic surface

Saffire Experiment
(cargo pallet not shown)

+Z (FWD)

X (ZENITH)+Y (STBD)

−Y (PORT)

−Z (AFT)

O (NADIR)



FDS Saffire Computation Results
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MPCV Hatch Re-Design Study

 MPCV considered hatch 
re-design to save weight

 Needed to understand 
how accidental fire 
(launchpad) would 
impact crew/vehicle

 Assess the efficacy of 
the Cabin Pressure 
Equalization Valve (CPE)

 Perform parametric 
studies for different fire 
scenarios, CPE 
actuation, vehicle 
interiors.
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MPCV Parametric Study

1345th International Conference on Environmental Systems

1.6

1.4

1.2

1.0

C
ab

in
 P

re
ss

ur
e 

 ( 
at

m
 )

300sec250200150100500
Time after fire start  ( sec )

450

400

350

300

Average
C

abin
Tem

perature
(K

)

Pressure Temperature
Valve Open at  30.0 sec 
Valve Open at  60.0 sec 
Valve Open at  120.0 sec 
No CPE valve open

MPCV Volume = 18.4  m3

MPCV Surface Area =  23.5  m2

Fire Growth Coefficient =  0.0586  kW/sec
2
 

Fire Growth Time =  30.0  sec
Fire Constant Time = 130.0  sec
Fire Decay Time =  15.0  sec
Total Fuel Consumed = 0.501 kg



Discussion

 FDS can perform high-fidelity simulations of flows inside 
spacecraft with fires/heat release.
 Can show localized results for combustion product accumulation, oxygen 

depletion, etc.
 Simulations can take days for long simulation times and/or complex 

geometries for a single configuration (vehicle interior and flow condition)

 LCM more amenable to large-scale parametric studies
 Can easily run hundreds of simulations over wide-ranging conditions such 

as vehicle volumes, fire sizes, relief valve sizes, etc.
 Lack the localized fidelity present in LES

 Use FDS to calibrate or tune the parameters in the LCM for better 
fidelity

 Currently both models use a prescribed fire.  Eventually need 
models to make a-priori predictions of fire based on vehicle 
interior contents

 Models can be extended to include ECLSS scrubbing and flows
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Conclusions

 FPDS pursuing two model approaches to fire in spacecraft
 CFD simulations using FDS build on efforts to model fire detection in ISS.
 LCM models treat spacecraft as a single volume and build off of efforts to 

define and predict a survivable fire in a spacecraft

 The complexity of real fires necessitate this approach
 CFD provides detailed predictions in realistic geometries but requires large 

computational time – not amenable to parametric studies
 LCM models suited for parametric studies and engineering evaluation of 

evolving spacecraft designs

 Demonstrated compatibility of model approaches in simple 
configuration and capability of both models
 Used FDS to simulate flows inside of Orbital Cygnus during Saffire
 Used LCM to assist in the evaluation of hatch re-design in the MPCV

 FPDS will continue to develop both model approaches
 Incorporate detection into both models
 Develop the capability to make a priori predictions of fire
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