An Analysis Methodology to Predict Damage Propagation in Notched Composite Fuselage Structures

A. Bergan, C. Dávila, and F. Leone
Structural Mechanics & Concepts Branch
NASA Langley Research Center
Hampton, VA

J. Awerbuch and T.-M. Tan
Dept. of Mechanical Engineer and Mechanics
Drexel University
Philadelphia, PA 19104

SAMPE Baltimore 2015
May 20, 2015
Outline

• Background

• Laminate cohesive approach (LCA)

• Full-scale fuselage panel test

• Test and analysis results

• Concluding remarks
Motivation: Predict Damage Containment Behavior

Damage containment is achieved through:
1. Multiple load paths (e.g. Skin and substructure)
2. Damage arresting features (e.g. Rivets)

Objective: introduce an analysis methodology to predict damage propagation behavior in composite skin-stiffened structures with a notch

Current state-of-the-art:
- Metallic structures: Damage containment
- Composite structures: linear threshold
Simple Case: Center Notch Test Specimen

Notched Strength Prediction

Laminate assumed:
- Homogeneous
- Orthotropic (multidirectional)

\[\sigma_n = \frac{K_{IC}}{(\pi a)^n} \]

Comments:
1. Classical linear elastic fracture mechanics (LEFM) does not scale accurately
2. Mar Lin is accurate, but requires large-scale testing to calibrate
3. Detailed, mesoscale progressive damage analysis is still being developed. Unresolved issues remain, e.g.:
 - Difficulties with interaction of matrix cracks and delaminations
 - Often computationally intractable for large structures

Analysis methods that can predict notched strength accurately reducing the number of large-scale tests will save time and cost
Strain Softening Approach

(Dopker et al. SDM Conference, 1994)

- Strain softening approach can predict notched strength accurately, but trial-and-error required to calibrate $\sigma - \varepsilon$ law.

- Strain softening law determined by trial-and-error for notch lengths of 1.25 in. and 2.5 in.

- Analysis using strain softening predicts excellent agreement for notch length of 8 in.

Legend:
- O Test
- + Analysis: Strain softening
- --- Analysis: Classical

Notched strength, σ_n

IM7/8551-7 $[\pm 45/0/90/\pm 30]_s$
Outline

• Background

• Laminate cohesive approach (LCA)

• Full-scale fuselage panel test

• Test and analysis results

• Concluding remarks
Actual Versus Idealization of (LCA)

Actual

Thin fiber reinforced polymer (FRP) laminate
• Multidirectional layup
• Thickness: \(t \)

Notch

Through-the-thickness damage

Damage propagates by evolution and interaction of micro- and mesoscale damage mechanisms

Idealization

Assume the damage can be represented with the cohesive zone model (CZM)

Laminate assumed:
• Homogeneous
• Orthotropic

Objective: Characterize the cohesive law for a laminate and crack orientation

References:
Characterization of LCA

1) Assume a trilinear cohesive law $\sigma(\delta)$

$$\sigma(\delta) = \begin{cases} \sigma_1(\delta) & 0 \leq \delta \leq \delta_k \\ \sigma_2(\delta) & \delta_k < \delta \leq \delta_t \\ \sigma_3(\delta) & \delta_t < \delta \leq \delta_c \end{cases}$$

Formulated $\sigma(\delta)$ in terms of σ_c, G_c, m, and n

$$\sigma_1(\delta) = K\delta$$
$$\sigma_2(\delta) = \frac{n\sigma_c(\sigma_t - \sigma_c)}{2mG_c} \delta + \sigma_c$$
$$\sigma_3(\delta) = \frac{\sigma_c^2(n-1)^2}{2G_c(m-1)} \delta + (1-n)\sigma_c$$

2) Integrate trilinear $\sigma(\delta)$:

$$G_{\text{fit}} = \int_0^{\delta_c} \sigma(\delta)\,d\delta$$

$$G_{\text{fit},2}(\delta) = \frac{n\sigma_c(\sigma_t - \sigma_c)}{4mG_c} \delta^2 + \sigma_c\delta + C_1$$
$$G_{\text{fit},3}(\delta) = \frac{\sigma_c^2(n-1)^2}{4G_c(m-1)} \delta^2 + (1-n)\sigma_c\delta + C_2$$

3) Fit expression for $G_{\text{fit}}(\delta)$ to test data: $G_R(\delta)$ using least squares

The fitting procedure determines: $\sigma_c, G_c, m,$ and n which completely define the trilinear cohesive law

4) Compute cohesive law from fracture toughness & crack opening displacement

$$\sigma(\delta) = \frac{\partial G_{\text{fit}}}{\partial \delta}$$

Simple procedure to determine cohesive law for a through crack
Experimental Measurement of $G_R(\delta)$

Compact Tension (CT) Specimen

- P, δ_t
- 0°
- a_0
- Δa
- W
- δ
- Thin multidirectional laminate

- $W = 2.01$ in.
- $a_0/W = 2$

Measure δ between two green points using digital image correlation (DIC)

Modified Compliance Calibration (MCC)

$G_R = \frac{p^2}{2t} \frac{\partial C}{\partial a}$

Assume that $C(a)$ can be fit with:

$$C = \frac{\delta_i}{P} = (a_\alpha + \beta)^{-1/\chi}$$

Where $\alpha, \beta,$ and χ are fit parameters from a LEFM finite element (FE) model

Therefore:

$$G_R = G_R(P, \delta_t, t, \alpha, \beta, \chi)$$

From CT test

From linear FE model

$$G_R = \frac{p^2}{2t} \frac{\alpha((P/\delta_i)^\chi)^{-1+1/\chi}}{\chi}$$

CT specimen with DIC can be used to measure $G_R(\delta)$
Demonstration of LCA

Test specimens:
- AS4/VRM-34
- Warp-knit fabric
- $[\pm 45/90_2/0/90_2/\pm 45]_s$
- Thickness = 0.104 in.
- Two sizes:
 - Small: $W = 2.01$ in.
 - Large: $W = 4.02$ in.

FE model

Cohesive elements

LCA yields accurate predictions of through crack fracture propagation
Outline

• Background

• Laminate cohesive approach (LCA)
 • Full-scale fuselage panel

• Test and analysis results

• Concluding remarks
Test Objective: Assess damage containment capability by monitoring damage propagation ahead of the notch tips.

Full-scale integrally stitched composite fuselage panel
Pultruded Rod Stitched Efficient Unitized Structure

Manufacturing Benefits:
- React out-of-plane load without mechanical fasteners
- Single sided tooling
- VARTM process

Promising technology for next generation airframes
Load Conditions

Full-scale Aircraft Structural Test Evaluation and Research (FASTER)
(Bergan et al. *J Compos Struct*, 113, 2014.)

FAA FASTER Fixture

Applied Loads

- **Axial Tension**, N_x
- **Internal Pressure**, p_i
- **Hoop load on frame**, N_θ^F
- **Hoop load on skin**, N_θ^S

Limit Loads:
- $N_x^L = 4670$ lbf/in
- $p_i^L = 9.2$ psi

Selected Load History

Flight loads simulated using FASTER fixture
Post Test Damage Observations

Exterior

- Stitch rows

- Notch

- Damage path changes direction

- S-1, S-2, S-3, S-4, S-5, S-6, S-7

- F-2, F-3

Interior

- Notch

- Widespread damage
- Stiffeners disbonded

Damage path altered at stitch rows

Complex and extensive damage observed
Idealize damage at the structural scale:
- **Through crack** in skin
- **Delamination** between skin and stiffener

This idealization considers the interaction between damage in skin and delamination of stiffener interfaces.
Finite Element Modeling

Global Model

Local Model

~323,000 elements
~1.9M DoF
Refined mesh size: 0.025 in.

Green: Skin and frame flanges tied together

Stitch

Blue: Cohesive elements between skin and stringer

Notch

Ply drops

Through-the-thickness crack paths (skin)

Side View

Skin

Stitch

Cohesive elements

15 in.

21.8 in.

17
Stitched Skin/Stringer Interface Model

Idealization

Undeformed stitch

Deformed stitch

Delamination crack tip

FE Representation: Superposed cohesive elements

Input Parameters:
- **Delamination:**
 - Fracture toughness determined from ASTM standard tests
 - Mixed mode energy governed by Benzeggagh-Kenane (BK) criterion
- **Stitch behavior:**

Outline

• Background

• Laminate cohesive approach (LCA)

• Full-scale fuselage panel

• Test and analysis results

• Concluding remarks
Strain Results: Indication of Damage Propagation

Local Model

45° Strain

Axial Strain

Consistent trend between test and analysis
Propagation of Skin/Stringer Delamination

Model predicts the delamination behavior inline with test observations
Crack Propagation

Test Measurements
- Exterior, A
- Exterior, B
- Interior, A
- Interior, B

Through crack half length, a [in]

Good agreement between tests and analysis
Doubling the number of stitches increases damage containment load by 11%
Outline

• Background

• Laminate cohesive approach (LCA)

• Full-scale fuselage panel

• Test and analysis results

• Concluding remarks
Concluding Remarks

- Introduced a new methodology to analyze damage propagation in a notched, stiffened composite fuselage structure

- Cohesive elements are used to represent:
 - Damage in the skin as it propagates from a notch
 - Delamination of skin/stiffener interface

- Good correlation between test and analysis observed for:
 - Damage initiation
 - Damage propagation
 - Strain redistribution

- Increasing the skin/stringer interface toughness can significantly improve the damage containment load
Acknowledgements

NASA
- Dawn Jegley
- Andrew Lovejoy
- Pat Johnston
- Cheryl Rose
- Will Johnston
- Kevin Gould
- Adam Przekop

FAA
- John Bakuckas
- Yongzhe Tian
- Jeff Panco
- Pat Sheehan
- Curt Davies

Boeing
- Kim Linton
- Bert Neal
- George Mills
- Greg Korkosz (Legacy)

Drexel University
- Amey Khonalkar
- Reewanshu Chadha

Post-test NDI conducted at Sandia National Labs, NM
Questions?
Backup
Post Test Damage Observations

Damage along notch axis

1.60N^L_x

-45°, Exterior (and fiberglass)

-45°/+45°, Fiber orientation

-45°, Interior (and fiberglass)

-45°, Interior

Skin/stringer delaminated

Delamination & matrix cracks within: 90°

90°

Delamination surface Interface: -45°/+45°

-45°, Exterior (and fiberglass)

+45°

90°

0°

Damage turned

Fiber orientation

Inner stitch row

Center stitch row

Flange edge

Outer edge

Stitch row

Delamination & matrix cracks within: 90°

Damage in skin exhibited similar path through the thickness