Jet-Surface Interaction – High Aspect Ratio Nozzle Test
Test Summary

Cliff Brown *

NASA Glenn Research Center
April 20, 2016

* Clifford.A.Brown@NASA.gov
Jet-Surface Interaction Noise Test Programs

* Covered by AATT and CST Projects
Motivation:
Turbo-electric Distributed Propulsion Concept (TeDP)

- 32:1 aspect ratio slot
- Divided into 2:1 at exit
- Electric fan has low pressure ratio, low temperature ratio
- Aft deck extends (estimated) 1-4 slot heights downstream

* Kim et. al., AIAA 2015-3805
Goals for JSI-HAR

1. Extend current database to larger aspect ratio nozzles
2. Verify / connect current small-scale database to larger-scale rectangular nozzles near surfaces
3. Acquire data suitable for creating / validating empirical jet-surface interaction noise models
4. Investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise sources
Test Plan

1. **Design** and test 3 nozzles (listed by priority):
 1. 16:1 aspect ratio – extend current database to higher aspect ratios
 2. 8:1 aspect ratio – verify/connect small-scale database to larger-scale
 3. 12:1 aspect ratio – midpoint to allow a second-order modeling
Test Plan

1. **Design** and test 3 nozzles (listed by priority):
 1. 16:1 aspect ratio – extend current database to higher aspect ratios
 2. 8:1 aspect ratio – verify/connect small-scale database to larger-scale
 3. 12:1 aspect ratio – midpoint to allow a second-order modeling
Test Plan

1. Design and test 16:1, 8:1, 12:1 aspect ratio nozzles
2. Add aft decks / surfaces onto nozzles
 1. Acquire data for modeling JSI source and shielding effect
Test Plan

1. Design and test 16:1, 8:1, 12:1 aspect ratio nozzles
2. Add aft decks / surfaces onto nozzles
3. Design and test nozzle septa inserts
 1. “Open” no septa insert – effect of aspect ratio on jet mixing noise
 2. 2:1 / 7 septa inserts – similar to the TeDP concept
 3. 1:1 / 15 septa insert – effect of varying number of septa
 4. Other variations
16:1 Nozzle Design

- Significant vorticity near corners
- Attached flow along outboard edge of major axis (BL thickness still significant)
- No normal shocks at nozzle exit
- Continuous area contraction helps
- Significant wake from center vane (added for structural support)

* Brown & Dippold, TWG Fall 2015
Flow Profile at Nozzle Exit

- 2:1 / 7 septa insert installed for JSI-HAR but not in WIND-US
- Total pressure measured 0.25” downstream of nozzle exit
- No indication of vortex in JSI-HAR
 - 1 Hz averaged pressure data would not likely pick this up even if present
- Flat profile between septa
- Losses slightly higher in JSI-HAR data

16:1 w/ 2:1 septa
Goals for JSI-HAR

1. Extend current database to larger aspect ratio nozzles
2. Verify / connect current small-scale database to larger-scale rectangular nozzles near surfaces
3. Acquire data suitable for creating / validating empirical jet-surface interaction noise models
4. Investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise sources
Extend to Higher Aspect Ratios

- Compare spectra to:
 - Show effect of nozzle aspect ratio
 - Connect to existing database via trends
- Similar to TeDP jet exit condition
 - Mach 0.7, unheated
- Nozzles with different sizes
 - 2:1, 4:1, 8:1 -> Area = 3.57 in\(^2\)
 - 16:1 -> Area = 33.7 in\(^2\)
- Scale:
 - Frequency as Strouhal number based on nozzle height
 - Distance to 100 equivalent jet diameter
- Trends follow from small to large scale across test programs
Goals for JSI-HAR

1. Extend current database to larger aspect ratio nozzles
2. Verify / connect current small-scale database to larger-scale rectangular nozzles near surfaces
3. Acquire data suitable for creating / validating empirical jet-surface interaction noise models
4. Investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise sources
Jet-Surface Interaction (JSI) Noise Sources and Effects

- Measured far-field noise includes:
 - Jet-surface interaction noise sources
 - Jet mixing noise (isolated)
 - Shielding/Reflecting effect

- Types of JSI noise sources
 - Surface loading ("scrubbing") noise
 - Trailing edge ("scattering") noise
 - Surface vibration noise

- Data acquired for surface lengths $x_E/h = 0.83, 2, 4, 6, 8, \text{ zero standoff}$
Extend to Larger Scale

• Compare spectra to:
 – Effect surface at increase aspect ratios
 – Connect to existing database via trends

• Similar to TeDP jet exit condition
 – Mach 0.7, unheated

• Surface length, $x_E/h = 6$

• Scale:
 – Frequency as Strouhal number based on nozzle height
 – Distance to 100 equivalent jet diameter

• Trends follow from small to large scale across test programs
Noise Impact of Surface

- Compare spectra to:
 - Show effect of adding surface
- Similar to TeDP jet exit condition
 - Mach 0.7, unheated
- Aspect ratio 16:1
- Surface length, $x_E = 8h$
- JSI source maybe large relative to shielding
- Model to full-scale factor matters

\[x_E/h = 8 \]

\[\Theta = 90^\circ \]

\[\Theta = 150^\circ \]
Noise Impact of Surface Length

- Compare spectra to:
 - Show effect of surface length
- Similar to TeDP jet exit condition
 - Mach 0.7, unheated
- Aspect ratio 16:1
- Shorter surface may give high frequency shielding with smaller low frequency penalty at 90°
- All surfaces produce more high frequency noise than isolated at 150°
Noise Impact of Observer Azimuthal Angle

- Compare spectra to:
 - Show effect sideline
- Similar to TeDP jet exit condition
 - Mach 0.7, unheated
- 16:1, $x_E/h = 4$
- Significant changes at downstream observer angles as azimuthal angle changes
Noise Impact of Nozzle Septa

- Compare spectra to:
 - Show effect nozzle septa
- Similar to TeDP jet exit condition
 - Mach 0.7, unheated
- 16:1, no surface
- Septa create tone to major axis observer that grows with number of septa
Summary of JSI-HAR

1. Extend current database to larger aspect ratio nozzles
 – Acquired data with 16:1 nozzle

2. Verify / connect current small-scale database to larger-scale rectangular nozzles near surfaces
 – Trends with and without surfaces appear to follow from previous work

3. Acquire data suitable for creating / validating empirical jet-surface interaction noise models
 – Acquired data over a range of surface lengths

4. Investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise sources
 – Data acquired with 3 septa configurations

• What’s next?
Goals for JSI-HAR

1. Extend current database to larger aspect ratio nozzles
2. Verify / connect current small-scale database to larger-scale rectangular nozzles near surfaces
3. Acquire data suitable for creating / validating empirical jet-surface interaction noise models
4. Investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise sources
JSI Source and Effect Modeling

• Empirical models have been developed for round nozzles near surfaces

• First-order modeling for rectangular nozzles based on these round nozzle models suggest:
 – Scaling distances and frequency on nozzle height
 – Adjusting potential core length

• Jet potential core length is nondimensionalizing parameter
 – Data were acquired with 16:1 nozzle to estimate potential core length
Jet Potential Core Length

- JSI source and shielding effect models both depend on jet potential core length \((x_C) \)
- Surface length in model is \(x_E/x_C \)
- Jet potential core length is approximately 7.75” for \(M_a=0.7 \), unheated jet
- Model for round jet would give \(x_C/D_e \approx 5.13 \)
- If rectangular nozzle scales by \(h \) instead of \(D_e \), \(x_C/h \approx 5.13 \rightarrow x_C \approx 7.7” \)
Jet Potential Core Length

- Modeled prediction with adjusted scaling parameters for rectangular nozzles
- Peak frequency shift
- Approximate right peak amplitude (JSI source driven)
- Spectral shape off at high frequencies
- More development needed!

![Graph showing PSD (dB) vs. St_h for M_a=0.7, Unheated with data points and lines indicating prediction and data.](chart)
Questions?

* Clifford.A.Brown@nasa.gov
Summary

• A round-to-rectangular convergent nozzle with aspect ratio 16:1 was designed for acoustic measurements
 – Minimized potential noise sources from: (1) internal flow separation and (2) shock cells
• 16:1 aspect ratio nozzle fabricated for testing
 – Inserts to simulate TeDP concept details (septa) rapid prototyped
• Pressure traverse at nozzle exit shows expected flow profile
• Preliminary analysis of noise data consistent with previous experiments
 – JSI noise source prominent at low frequencies
 – Shielding at only the highest frequencies
• Test on-going through October
 – Baseline (no septa), 2:1 / 7 Septa inserts planned

* Clifford.A.Brown@NASA.gov
** Vance.F.Dippold@NASA.gov