The Technology and Future of In-Situ Resource Utilization (ISRU)
The University of Central Florida

Oxygen Extraction from Minerals

Presented by Dr. Tony Muscatello
NASA Applied Chemistry Laboratory
Kennedy Space Center
February 6, 2017
Outline

• Introduction
• Hydrogen or Carbon Monoxide Reduction of Ilmenite (FeTiO₃)
• Carbothermal Reduction of Metal Oxides and Silicates w/Methane
• Molten Regolith Electrolysis (MRE)
• Combined CO/Carbothermal Reduction of Metal Oxides and Silicates
• Water Extraction from Regolith
• Recent Development and Field Demonstrations
• Challenges
• Future Directions
Introduction

- Lunar regolith contains reducible oxides:

<table>
<thead>
<tr>
<th>Oxide</th>
<th>JSC-1 Lunar Simulant (wt%)</th>
<th>Lunar Sample 14163 (wt%)</th>
<th>Lunar Sample 62230 (wt%)</th>
<th>Lunar Sample 10002 (wt%)</th>
<th>Lunar Sample 12001 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>42.55</td>
<td>47.3</td>
<td>46.6</td>
<td>42.2</td>
<td>46.0</td>
</tr>
<tr>
<td>TiO₂</td>
<td>7.71</td>
<td>1.6</td>
<td>-</td>
<td>7.75</td>
<td>2.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.47</td>
<td>17.8</td>
<td>26.5</td>
<td>13.6</td>
<td>12.5</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.44</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FeO</td>
<td>15.16</td>
<td>10.5</td>
<td>5.60</td>
<td>15.3</td>
<td>17.2</td>
</tr>
<tr>
<td>MgO</td>
<td>7.98</td>
<td>9.6</td>
<td>6.40</td>
<td>7.76</td>
<td>10.4</td>
</tr>
<tr>
<td>CaO</td>
<td>11.99</td>
<td>11.4</td>
<td>14.5</td>
<td>11.9</td>
<td>10.9</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.45</td>
<td>0.7</td>
<td>0.44</td>
<td>0.47</td>
<td>0.48</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.15</td>
<td>0.6</td>
<td>-</td>
<td>0.16</td>
<td>0.26</td>
</tr>
<tr>
<td>MnO</td>
<td>0.21</td>
<td>0.1</td>
<td>-</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>0.30</td>
<td>0.41</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.14</td>
<td>-</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
</tr>
</tbody>
</table>

- But they are very stable and require lots of work!
Propellant from the Moon will revolutionize our current space transportation approach

Each Apollo mission utilized Earth-derived propellants (Saturn V liftoff mass = 2,962 tons)

What if lunar lander was refueled on the Moon’s surface?
73% of Apollo mass (2,160 tons)

Assume refueling at L1 and on Moon: 34% of mass (1,004 tons)

Assume refueling at LEO, L1 and on Moon: 12% of mass (355 tons)

+ Reusable upper stage & lander (119 tons)

+ Reusable lander (268 tons)

Courtesy of Brad Blair, Colorado School of Mines
Hydrogen or Carbon Monoxide Reduction of Ilmenite (FeTiO$_3$) and Pyroclastic Glass-Chemistry

- Lunar regolith and regolith at other locations (asteroids and Mars) contain a variety of metal oxides in the form of oxides, silicates, and aluminates.
- Lunar regolith contains ilmenite (FeTiO$_3$) at 0.4-12.8 vol% depending on location, with lunar mare being higher than the highlands.
- H$_2$ Reduction: $\text{H}_2 + \text{FeTiO}_3 \rightarrow \text{H}_2\text{O} + \text{Fe}^0 + \text{TiO}_2$ ($(T = 900^\circ\text{C})$

 $\text{H}_2\text{O} + 2 \text{e}^- \rightarrow \text{H}_2 + \frac{1}{2} \text{O}_2$

 O_2 Yield = \sim1-2 wt% - depending on location

- CO Reduction: $\text{CO} + \text{FeTiO}_3 \rightarrow \text{CO}_2 + \text{Fe}^0 + \text{TiO}_2$ ($(T = 900^\circ\text{C})$

 $\text{CO}_2 + \text{H}_2 \rightarrow \text{H}_2\text{O} + \text{CO}$ (RWGS Reaction)

 $\text{H}_2\text{O} + 2 \text{e}^- \rightarrow \text{H}_2 + \frac{1}{2} \text{O}_2$

 O_2 Yield = \sim1-2 wt% - depending on location
Flat, Open Area for Oxygen Extraction Demo

Varied Terrain, Slopes, & Rock Distribution for Resource Prospecting/ Mobility Demo

RESOLVE/Scarab Field Test Location

Main Camp Area

This Road will be graded

Main Access Road to Test Area

Access Road to ISRU Areas

Outpost Oxygen Production Field Test Location

Lodging Infrastructure

Staging/Unpacking Area

Bad road here Cannot negotiate much

Mauna Kea: Hale Pohaku

© 2007 Google
PILOT Field Test Hardware

Rotating H$_2$ Reduction Reactor - 17 kg/batch

Hydrogen Storage

Product Processor

Oxygen Liquefier/ Storage (IR&D)

Salt Extraction Collector and Second Stage Filter

Water Condenser

Lander Simulator (IR&D)

PILOT – Precursor ISRU Lunar Oxygen Testbed

(Lockheed Martin Astronautics – Denver)
ROxygen Field Test Hardware

Two Fluidized H_2 Reduction Reactors - 10 kg/batch each

- Water Electrolysis Units (2)
- Gaseous O$_2$ Storage
- Water Tanks (2)
- Water Freezer
- Hydrogen Tank/Separator

ROxygen H$_2$ Reduction System

(JSC, KSC, and GRC)
ROxygen & PILOT Tasks

- Demonstrate excavation and material delivery to plant and removal of spent regolith;
 - Increase distance and terrain complexity between plant and excavation site each day

- Demonstrate regolith processing to extract oxygen
 - Min. of 4 h on one day; nominal 8 h per day
 - Max. of 8 h/day for 5 days

- Demonstrate oxygen separation and storage
 - Liquefaction and cryogenic storage
 - Moderate pressure gaseous oxygen

- Opportunistic Demos
 - Demonstrate alternative oxygen liquefaction and storage
 - Hot fire a LO₂/LCH₄ RCS 25 lbf thruster igniter
 - Mossbauer spectrometer on Cratos to measure iron before and after processing
2008 Field Test Results

- PILOT (1000 kg O\textsubscript{2} per year design scale)
 - System integrated with mini rover equipped with bucket drum excavator bringing soil to the reactor. Integrated system was tested during field tests in Hawaii.
 - Processing capacity of \(~15\) kg of regolith per batch yielding \(150\) g of O\textsubscript{2}.
 - Produced oxygen yields of 1 wt\% of processed regolith.
- ROxygen (\(~667\) kg O\textsubscript{2} per year design scale)
 - Two large–scale reactors were tested in 2008 at the first ISRU technology field tests.
 - Tests in large reactor provided oxygen yields in the range 0.2\% – 0.5\% by mass of regolith. The low yields are attributed to the operational limits of a contaminant scrubber.
 - Recirculation of hydrogen was achieved with removal of hydrogen halide contaminants from the produced water.
Water From Rocks!

More info at: https://isru.nasa.gov/Hydrogen-Reduction-of-Regolith.html
Concentric Hydrogen Reduction Reactor

• Technology features
 – Concentric cylindrical chambers allow the exchange of heat from the hot regolith being processed to fresh regolith waiting to be introduced.
 – Maintains regolith in fluid and loose state (fluidization) by hydrogen flow and/or vibration of the reactor – compares efficiencies.

• Results and Performance
 – Vibrofluidization and gas fluidization with Helium gas are near equally efficient in heat recuperation. Fluidization with hydrogen is not as effective.
 – Tests in large reactor provided oxygen yields in the range 0.2% – 0.5% by mass of regolith. The low yields are attributed to the operational limits of a contaminant scrubber.
 – Added mass and complexity of a dual chamber reactor is also counterproductive for ISRU usage.
Carbothermal Reduction of Metal Oxides and Silicates - Chemistry

- Methane Decomposition and Carbon Deposition:
 \[\text{CH}_4 \rightarrow \text{C}(s) + 2 \text{H}_2 \ (T = >1600^\circ\text{C}) \]

- Carbothermal Reduction:
 \[\text{C}(s) + (\text{Fe, Ti, Si})\text{O}_x \rightarrow x \text{CO} + \text{Fe}^0 + \text{Ti}^0 + \text{Si}^0 \]

- Methane Regeneration (Sabatier Rxn):
 \[\text{CO} + 3 \text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O} \ (T = \sim 400^\circ\text{C}) \]

- Water Electrolysis:
 \[\text{H}_2\text{O} + 2 \text{e}^- \rightarrow \text{H}_2 + \frac{1}{2} \text{O}_2 \]
 \[\text{O}_2 \text{ Yield} = <15 \text{ wt\% with acceptable carbon losses} \]
Carbothermal Reduction of Silicates – Reaction Summary

More info at: https://isru.nasa.gov/Carbothermal.html
Carbothermal Reduction of Silicates – Practical Limitations and Solution

Direct energy processing approach where the regolith becomes its own processing container.

Typical crucible after a single carbothermal reduction processing batch in a traditional hot-wall furnace.

Lunar regolith has a very low thermal conductivity of 0.0172 - 0.0295 W/m-K
Lunar regolith has a very low thermal conductivity of 0.0172 - 0.0295 W/m-K.

Regions of molten JSC-1A lunar regolith simulant produced during a 40-minute heating test.
Carbothermal Regolith Reduction Module (ORBITEC)
ORBITEC developed the Carbothermal Regolith Reduction Module to demonstrate remote, semi-autonomous extraction of oxygen from lunar regolith simulant using solar energy

- Automated filling of the regolith hopper and transfer to carbothermal reduction reactor
- Automated gas handling system, including gas clean-up beds and methanation reactor
- Automated removal of processed regolith
- Ability to operate remotely through an http:// interface

- Hardware is sized to support oxygen production at a rate 1 MT O₂ per year
Physical Sciences Inc. built a Solar Energy Collection and Delivery Module that provides concentrated solar energy to the Carbothermal Regolith Reduction Module.

- Seven solar concentrators are mounted on an array with two-axis tracking of the sun.
- The solar energy from each concentrator is delivered to the carbothermal reactor via a fiber optic cable.
- Each fiber optic cable delivers 86 to 100 W (total of 600 to 700 W) of concentrated solar energy.
Carbothermal Reduction with Solar Energy

- Oxygen yields up to 10.3%wt with processing times up to 80 minutes have been demonstrated (JSC-1A lunar regolith simulant and tephra).
- The carbothermal reduction process produces silica fume as an intermediate product, so keeping the end of the quartz rod clean has been a challenge.
- ORBITEC has built and successfully tested a gas nozzle that keeps the end of the quartz rod clean during processing (aerodynamic window).
Solar Concentrator/Carbothermal Reduction of Regolith for Lunar Oxygen Production – 2010 Field Demo on Mauna Kea
NASA/PSI/ORBITEC
The carbothermal plant
- Performed 17 tephra melts (12 for O_2 production)
- over 7 days
- Produced 31.5 g of water from the tephra
- Equivalent to 28 g of oxygen
- 9.7% oxygen yield by mass
Molten Regolith Electrolysis - Chemistry

- Molten Oxide Electrolysis:
 \[O^{2-} \rightarrow 2 \, e^- \, (cathode) + \frac{1}{2} \, O_2 \, (gas) \, (T = >1600^\circ C) \]

 \[\text{Fe}^{2+} \, (electrolyte) + 2 \, e^- \, (cathode) \rightarrow \text{Fe}^0 \, (liquid) \]

 \[\text{Si}^{4+} \, (electrolyte) + 4 \, e^- \, (cathode) \rightarrow \text{Si}^0 \, (liquid) \]

 \[O_2 \, \text{Yield} = 15-37 \, \text{wt}\% \, \text{depending on scale of operation and feed (mare vs. highlands)} \]

 Metals: [Will be covered by Laurent Sibille]

More info at https://isru.nasa.gov/Molten_Regolith_Electrolysis.html
Molten Regolith Electrolysis

Schematic of electrolytic cell configuration to investigate electrochemical behaviors of various anode materials in molten oxides (left) and furnace containing the cell in operation at 1600°C (right) (MIT)

Thermal model of Joule heating in a Molten Regolith Electrolysis reactor in which the regolith itself contains a centered pool of electrolyte heated by the electrolytic current. (Image credit: NASA Kennedy Space Center)

Schematic of counter gravity Molten Material Withdrawal device (Ohio State U.)

Small casting of molten ferrosilicon (lower layer) and molten oxide of lunar composition (top layer) withdrawn by counter-gravity suction at 1600°C from reactor furnace (Image credit: Ohio State U./KSC)
Combined CO/Carbothermal Reduction of Metal Oxides and Silicates – Chemistry (Pioneer Astronautics)

- Carbon Monoxide Silicate Reduction System (COSRS):
 - Iron oxide reduction \((T = 800-850^\circ C)\):
 \[
 \text{FeO} + \text{CO} = \text{Fe} + \text{CO}_2 \quad \Delta H = -15.7 \text{ kJ}
 \]
 - Carbon deposition (carbon monoxide disproportionation) \((T = 600^\circ C)\):
 \[
 2 \text{CO} = \text{C} + \text{CO}_2 \quad \Delta H = -18.7 \text{ kJ}
 \]
 - Carbothermal reduction \((T = \text{up to } 1600^\circ C)\):
 \[
 \text{FeO} + \text{C} = \text{Fe} + \text{CO} \quad \Delta H = 156.7 \text{ kJ}
 \]
 \[
 \text{SiO}_2 + 2 \text{C} = \text{Si} + 2 \text{CO} \quad \Delta H = 689.8 \text{ kJ}
 \]

Combined CO/Carbothermal Reduction of Metal Oxides and Silicates – Chemistry (Cont.)

• Carbon Monoxide Silicate Reduction System (COSRS):
 Reverse water gas shift reaction (T = 400°C):
 \[\text{CO}_2 + \text{H}_2 = \text{CO} + \text{H}_2\text{O} \quad \Delta H = -2.9 \text{ kJ} \]
 Electrolysis:
 \[\text{H}_2\text{O} = \text{H}_2 + \text{O}_2 \quad \Delta H = 571.7 \text{ kJ} \]

 \(\text{O}_2 \text{ Yield} = \sim 15-20 \text{ wt\%} \)

 Byproducts: SiO (up to 5 wt%) can be reduced to nearly pure Si metal

 Ferrosilicon alloy – up to 25 wt%
Combined CO/Carbothermal Reduction of Metal Oxides and Silicates

Recoverable Oxygen in JSC-1 Lunar Simulant

<table>
<thead>
<tr>
<th>Compound</th>
<th>kg Compound per 100 kg Soil</th>
<th>Compound Molecular Weight</th>
<th>kg Oxygen per 100 kg Soil</th>
<th>Cumulative kg Oxygen per 100 kg</th>
<th>kg Carbon per 100 kg Soil</th>
<th>Cumulative kg Carbon per 100 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_2$O$_3$</td>
<td>3.44</td>
<td>159.70</td>
<td>1.03</td>
<td>1.03</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>FeO</td>
<td>7.35</td>
<td>71.85</td>
<td>1.64</td>
<td>2.67</td>
<td>1.23</td>
<td>2.00</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.66</td>
<td>110.00</td>
<td>0.29</td>
<td>2.96</td>
<td>0.22</td>
<td>2.22</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>0.04</td>
<td>152.00</td>
<td>0.01</td>
<td>2.97</td>
<td>0.01</td>
<td>2.23</td>
</tr>
<tr>
<td>MnO</td>
<td>0.18</td>
<td>71.00</td>
<td>0.04</td>
<td>3.01</td>
<td>0.03</td>
<td>2.26</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>47.71</td>
<td>60.00</td>
<td>25.45</td>
<td>28.46</td>
<td>19.08</td>
<td>21.34</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>1.59</td>
<td>79.88</td>
<td>0.64</td>
<td>29.09</td>
<td>0.48</td>
<td>21.82</td>
</tr>
</tbody>
</table>

Iron Oxide Reduction - Carbon Deposition Reactor (81 g JSC-1)

COSRS Process Description Carbothermal Reduction Furnace
Lunar JSC-1 Carbothermal Residue
“Identified conditions leading to maximum leverage (\(= \text{O}_2 \text{ recovered/C lost}\)).

- Carbon losses are mostly as silicon carbide.
- Carbon losses can be mitigated by reacting silicon carbide with fresh silica in the lunar soil as follows.
 \[
 \text{SiO}_2 + 2 \text{SiC} = 3 \text{Si} + 2\text{CO} \quad \Delta H = 833.6 \text{ kJ}
 \]

- Similarly, silicon carbide can be reacted with fresh ferrous oxide in the lunar soil as follows.
 \[
 \text{FeO} + \text{SiC} = \text{Si} + \text{Fe} + \text{CO} \quad \Delta H = 228.6 \text{ kJ}
 \]

- The above reactions suggest that adding less than the theoretical, or stoichiometric, amount of carbon to reduce all of the silicon oxide might also reduce carbide formation.”

- Additional work has not been published yet.
Water Extraction from Regolith

Gases released from heated Rocknest aliquots

Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover
L. A. Leshin et al.
Science 341, (2013); DOI: 10.1126/science.1238937

Water in top 1-m on Mars

Up to 10% Water

Hydrogen-rich area detected at "Marias Pass" on Mars by Curiosity
Challenges

- H₂ Reduction
 - Removal of H₂S and HF from water
 - Scale-up
 - Reactor seals
- Carbothermal Reduction
 - Carbon losses
 - Mass of solar concentrator and dust accumulation
 - Silica fume control
- Molten Regolith Electrolysis
 - Electrode consumption
- COSRS
 - Scale-up and development
- Funding
 - Moon vs. Mars vs. Asteroids
 - All of the above?
Future Direction
[Tony’s Wish List]

- NASA has restarted its ISRU Project
- NASA should fully embrace ISRU
- Integrated human exploration of the inner solar system
 - Moon, asteroids, Mars moons, Mars
- Commercial development of key technologies in partnership w/NASA to reduce costs
 - i.e. shared funding
 - Habitats, ISRU, spacecraft, launch vehicles, etc.
 - Asteroid mining
- Pick an architecture and stick with it for >8 years