NASA’s Quiet Supersonic Aircraft

Tom Jones
NASA Aeronautics Research Mission Directorate

2017 EAA AirVenture, Oshkosh, WI
July 28, 2017
Armstrong Flight Research Center
www.nasa.gov
Morning Agenda

- Who am I and Where is NASA Armstrong?
- Boom 101 and Operational Testing
- Why a Low-Boom Flight Demonstration? Why now?
- The QueSST X-plane Preliminary Design Overview
- What’s Happening Now/Next?
- Q & A
Tom Jones

- Originally from Buffalo/Niagara Falls, NY
- Lived and flown in So Cal, Seattle, and Washington D.C.
- Own, maintain, and fly a Thorp T-18
- Flight Test Engineer in NASA F/A-18Bs and F-15B/Ds for supersonic research
- 20 years at NASA Dryden/Armstrong
- Now Operations Manager for QueSST
“Mystery creates wonder and wonder is the basis of man’s desire to understand.”

– Neil A. Armstrong
Naval Aviator (1949-1960)
NASA Test Pilot and Astronaut (1955-1971)
The purpose of flight research is

“… to separate the real from the imagined and to make known the overlooked and the unexpected.”

– Dr. Hugh L. Dryden
Administrator of NACA (1949-1958)
First Deputy Administrator of NASA (1958-1965)
Edwards AFB, California, main campus:
- Year-round flying weather
- 350 testable days per year
- 68 miles of lakebed runways
- 29,000 feet of concrete runways
- 301,000 acres remote area
- Extensive range airspace
- Supersonic corridors
Supersonic Corridors

Black Mountain Supersonic Corridor
~56 nm long
~8 nm wide
Down to as low as 500’ AGL to unlimited

High Altitude Supersonic Corridor
224 nm long
15 nm wide
FL300 to unlimited
Sonic Boom 101 & Operational Testing
Barriers to Success of Supersonic Aircraft

Sonic Boom Basics

- At supersonic speeds, air pressure rises sharply through shockwaves
- Shock system is dragged behind it like the wake from a boat
- As the shockwave passes a person on the ground, a “sonic boom” is heard
- Booms are heard along the entire length of the supersonic flight
- A large “Carpet” on the ground is exposed to booms as the aircraft flies
- Noise is reduced at the edge of the carpet

Concorde, US SST sonic boom noise led to the current ban on supersonic overland flight
What Shockwaves Look Like

T-38 Shockwave images

Change in Air Pressure, \(\text{ Ib/ft}^2 \)

Distance along Length of Aircraft, \(\text{ ft} \)

Direction of Probe
Sonic Boom Reduction by Aircraft Shaping

Multiple disturbances near aircraft

- Disturbances merge
- Signal lengthens
- Noise attenuates

Boom!

\[\Delta P \]

- Two disturbances remain
- Signal has a characteristic “N” shape
- Called an “N wave” boom “signature”

Boom!

Control strength and position of disturbances

- Shaped boom at the ground
- Results in more of a “thump”

Typical Supersonic Design

Specially Shaped Boom Design
Sonic Booms and loudness on decibel scale

Did you hear something?
How do We Measure Response?
1 – Boom Simulators

- Sophisticated boom simulators
 - Unique National capability
- Accurate reproduction of sonic boom noise
 - Consistent, repeatable test conditions
 - Wide variety of signature shapes and levels
- Study elements of boom that create annoyance
 - Goal: Understand how annoyance is related to spectrum, level, rattle, vibration
How do We Measure Response?
2 – Flight Research with Specialized Aircraft Maneuver

• Current aircraft cannot generate low booms during level flight
• Simulated low boom can be generated by dive maneuver
• Effective tool for research in more relevant environment
 - Less control over signature acoustics
• Limited to use in remote areas such as Edwards AFB

Signature Amplitude: .1-.5 PSF (5-25 Pa)
Signature Loudness: 60-80 PLdB

10 to 20 miles
How do We Measure Response?
3 – Quiet Supersonic Technology Demonstration

- Only completely realistic way to measure response to quiet supersonic overflight
- Flights conducted over many communities
 - Particularly without prior exposure to booms
- Requires a unique research platform
 - Examines design, atmospheric, and operational elements of Quiet supersonic flight
- Viewed as critical step by Regulatory Groups (FAA, ICAO)
- Can be done with a relatively small aircraft
- NASA QueSST X-Plane
 - Preliminary Design completed in June and Design/Build/Test RFP expected very shortly.
 - First project in the New Aviation Horizons Initiative
Why a Low-Boom Flight Demonstration?

Why now?
Why Supersonics?

- Supersonic flight over land enables large reduction in travel time
 - Valuable to business travelers, cargo shippers, National Security and traveling public
- Opportunity for US to take the lead in new class of aircraft manufacturing
- Market potential has been validated in numerous studies
 - Business Aircraft: 350-500 units
 - Civil Airliners 500+ units
- Maintains or increases Aviation’s impact on US GDP and has high value jobs
 - Aviation manufacturing contributes $76.1B to the US trade balance, as of 2012
 - Aviation is the #1 exporter of US goods, as of 2011
 - Aviation contributes to 11.5M direct and indirect jobs in civil and general aviation, as of 2012

NASA investment in fundamental technology for supersonics enables continued US leadership in global civil aviation
Supersonic Civil Overland Flight is Prohibited Because of Sonic Boom

- Since ~1973, U.S. (FAA) and Int’l Civil Aviation Org. (ICAO) regulations prohibit flight that creates sonic boom over populations
 - US: No flight at Mach >1.0 over land
 - ICAO: “no unacceptable situations for the public due to sonic boom”

- Overland flight is required for economically feasible supersonic operations

- An international sonic boom noise standard is required to open the supersonic civil aviation market
 - US FAA and other countries regulatory orgs align their standards to ICAO
Rationale: Supersonic Overland Flight Creates an Opportunity for Future US Civil Aviation Leadership

• Global demand for air travel is growing
 – More travelers in existing markets
 – New markets appearing rapidly
 – The distance between some population centers is great (especially considering the growth in the Asia-Pacific region), which places a greater value on speed

• New supersonic products lead to more high-quality jobs in the US.
 – Even though the initial products are expected to be higher-end general aviation aircraft, such products expand design and manufacturing employment.
 – Technology leadership is established through initial products will lead to development of larger, more capable airliners.

• A new supersonic capability developed in the US will further support a positive balance of trade
 – Other countries have a significant need for high speed transport because it can connect them to Western markets more effectively.
 – There is new “wealth” in other regions (e.g. China and the Middle East) that could be spent on a new product built in the United States.
“The United States is not the only sponsor of supersonic technology development and once the capability is developed users in the US and other countries will purchase it regardless of where it is manufactured.” – NRC report “Commercial Supersonic Technology: The Way Ahead (2001)”
Why a Flight Demonstration?

• The research community and NASA have collected sufficient data to convince FAA/ICAO of the need for a new low boom standard, but the ICAO consensus is that a demonstrator aircraft will be needed to understand the response of the general public. This is now part of the ICAO plan.

Field studies show the potential for acceptable low boom noise

• The US lead in a demonstration X-plane will ensure that we have more influence on the eventual rule making process.

• In addition, flying first ensures that US industry has the lead in tools and technologies needed to dominate the new civil supersonic transport market.
Questions Only a Flight Demonstration Can Answer

- Will overflown communities find these low-boom shaped cruise signatures acceptable?
 - Do we have appropriate, validated metrics and procedures for certification?
- Can the transition focus boom footprint be minimized to allow supersonic operations?
- What influence will turbulence and other atmospheric effects have on low-boom shaped signatures?
Recent NASA-led research has capitalized on 40+ years of investment to produce breakthroughs in boom noise reduction. Extensive wind tunnel tests indicate that these new designs show the low-boom characteristics that were predicted. New advances in modeling tools allow us to design new low-boom configurations.
Quiet Supersonic Technology (QueSST) X-Plane Overview

Michael Buonanno
LM QueSST Chief Engineer

© 2016 Lockheed Martin Corporation. All Rights Reserved.
Work Done on N+2 Supersonic Validations Program Showed that Modern Design Tools are Adequate for Shaped Boom Design
QueSST Configuration C606 Overview

Configuration C606

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTOW</td>
<td>22,500 lb</td>
</tr>
<tr>
<td>Empty Weight</td>
<td>14,000 lb</td>
</tr>
<tr>
<td>Maximum Fuel</td>
<td>7,100 lb</td>
</tr>
<tr>
<td>Payload</td>
<td>500 lb</td>
</tr>
<tr>
<td>S_{ref}</td>
<td>486 sq ft</td>
</tr>
<tr>
<td>W/S</td>
<td>46 lb/ft²</td>
</tr>
<tr>
<td>T/W</td>
<td>0.60</td>
</tr>
<tr>
<td>Engine</td>
<td>1xGE F404</td>
</tr>
<tr>
<td>Design Mach</td>
<td>1.42</td>
</tr>
<tr>
<td>Loudness</td>
<td><75 PLdB</td>
</tr>
</tbody>
</table>

© 2016 Lockheed Martin Corporation. All Rights Reserved.
QueSST Design Features

- Single GFE F404 engine w/ stock nozzle reduces cost and integration complexity
- Wing shielding eliminates inlet spillage contamination to signature
- Conventional tail arrangement reduces low-speed S&C complications
- Fixed canard provides necessary nose-up trim at low boom design point
- Extended, equivalent area-matching nose shapes forward shock
- XVS/EFVS systems provide forward visibility
- Large, unitized skins reduce part count and manufacturing cost
- Re-use of T-38 canopy & crew escape to minimize qualification costs
- Miniature T-tail attenuates aft shock impact to signature
- Re-use of T-38 canopy & crew escape to minimize qualification costs
- Extended, equivalent area-matching nose shapes forward shock
- XVS/EFVS systems provide forward visibility
- Wing shielding eliminates inlet spillage contamination to signature
Signature Traceability

- N+2 frequency content matched everywhere
- Variability at all frequencies and/or increased high frequencies to match a range of possible products

QueSST Size and Shape Provide Excellent Traceability to a Range of Future Commercial Products
Summary

• Work on the Low Boom Flight Demonstrator Concept Formulation and Refinement Studies established requirements and resulted in a closed airplane configuration capable of generating extremely quiet boom levels

• Current work on preliminary design will further mature the X-plane and lay the foundation for an eventual quiet commercial supersonic aircraft
What’s Happening Now/Next?
Quiet Supersonic Technology (QueSST) Preliminary Design Review (PDR) Completed

- The QueSST PDR was held June 20 – 23 of 2017 in Palmdale, CA – 125+ participants including the NASA and LM teams
- The QueSST Team (NASA and LM teams) jointly provided a robust set of review materials and presentations per the QueSST PDR Terms of Reference

- The PDR Independent Review Board & the Project Review Team were formed with a broad cross-section of over 25 subject matter experts from across the Agency. They reviewed the design materials for technical acceptability.
- Initial assessment by the PRT was very positive with indications of a successful PDR.
LBFD Timeline

<table>
<thead>
<tr>
<th>Year Range</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 - 2014</td>
<td>Concept Exploration Studies</td>
</tr>
<tr>
<td>2014 - 2015</td>
<td>Concept Refinement Studies</td>
</tr>
<tr>
<td>Feb 2016</td>
<td>QueSST Preliminary Design contract awarded to Lockheed-Martin as part of NASA's New Aviation Horizons Initiative</td>
</tr>
<tr>
<td>Feb 2017</td>
<td>Sources Sought Notice Posted on FedBizOpps (https://www.fbo.gov/)</td>
</tr>
<tr>
<td>Jun 2017</td>
<td>Preliminary Design Review</td>
</tr>
<tr>
<td>Jun 2017</td>
<td>LBFD Design/Build/Test (DBT) Draft Request For Proposal (RFP) released on FebBizOpps</td>
</tr>
<tr>
<td>Aug 2017</td>
<td>LBFD DBT RFP release anticipated</td>
</tr>
<tr>
<td>2018</td>
<td>LBFD DBT contract award</td>
</tr>
<tr>
<td>2019</td>
<td>Critical Design Review</td>
</tr>
<tr>
<td>2021</td>
<td>First flight & Envelope Expansion</td>
</tr>
<tr>
<td>2022</td>
<td>Low boom acoustic signature validation complete</td>
</tr>
<tr>
<td>2023</td>
<td>Initial community response test (based at NASA AFRC)</td>
</tr>
<tr>
<td>2023 - 2025</td>
<td>Community response tests in US (remote based)</td>
</tr>
</tbody>
</table>

Dates in blue test are estimated and dependent on approval and funding
Example Req’ts from Sources Sought Posting

...predicted ground carpet signature between 70 - 80 PLdB within the lateral limits (± 40 deg)...

...predicted maximum calculated loudness level of less than or equal to 75 PLdB throughout the lateral limits (± 40 deg) of the nominal supersonic cruise boom carpet.

...a minimum of two supersonic cruise passes of at least 50 nm in length, spaced a minimum of 20 minutes apart, over a single community area during a single flight with standard day environmental conditions.

...predicted ground carpet signature between 70 - 80 PLdB within the lateral limits (± 40 deg)...

...predicted maximum calculated loudness level of less than or equal to 75 PLdB throughout the lateral limits (± 40 deg) of the nominal supersonic cruise boom carpet.

...a minimum of two supersonic cruise passes of at least 50 nm in length, spaced a minimum of 20 minutes apart, over a single community area during a single flight with standard day environmental conditions.

...peak acoustic energy occurring at a frequency no greater than 10 Hz, at design supersonic cruise...

...predicted ground carpet signature between 70 - 80 PLdB within the lateral limits (± 40 deg)...

...predicted maximum calculated loudness level of less than or equal to 75 PLdB throughout the lateral limits (± 40 deg) of the nominal supersonic cruise boom carpet.

...a minimum of two supersonic cruise passes of at least 50 nm in length, spaced a minimum of 20 minutes apart, over a single community area during a single flight with standard day environmental conditions.

...peak acoustic energy occurring at a frequency no greater than 10 Hz, at design supersonic cruise...

...minimum of three flight operations of the baseline mission, from engine startup to engine shutdown, over a 9-hour time span.
Quiet Supersonic Overflight
Community Test Concepts and Objectives

Objective: Create a robust dose – response relationship for community annoyance vs appropriate noise metric(s)

- Large populations, large number of representative responses.
 - 10k to 100k, depending on survey method employed
 - Varied community settings including representative:
 - Geography and climate
 - Home and building construction
 - Community demographics, etc.

- A range of exposure levels will be required, possibly including normal booms
- Up to a maximum of 6-8 of daily exposures
 - Night exposures may be required
- Sufficient test duration to establish effect of repeated exposure
- Account for test aircraft operational limitations
 - Airfield facilities
 - Operations tempo

Results from Edwards AFB community response pilot campaign

![Graph showing the relationship between boom overpressure and percent of smartphone participants noticed and bothered by boom.](image)
Concluding Remarks

• Supersonic Commercial Flight offers an unfulfilled promise of improved mobility
• Long & rich history of research and development of sonic boom & minimization technology at NASA
• Recent developments have resulted in a breakthrough achievement of very low boom levels for integrated supersonic designs.
• Low Boom Flight Demonstration X-Plane is the next logical step
Any Questions?
Backup slides
Density Changes

- Flow around aircraft changes air density, generally invisible
- Density changes can refract (bend) light
First In-Flight Image

- Schlieren, German word for “streak”, from 1665, used for making lenses
- First schlieren image of full-scale supersonic aircraft by Leonard Weinstein, NASA Langley, 12/13/1993
- Shock waves can be seen combining 8mm movie film
3 Mega-Drivers

6 Strategic Research & Technology Thrusts

Safe, Efficient Growth in Global Operations
- Enable full NextGen and develop technologies to substantially reduce aircraft safety risks

Innovation in Commercial Supersonic Aircraft
- Achieve a low-boom standard

Ultra-Efficient Commercial Vehicles
- Pioneer technologies for big leaps in efficiency and environmental performance

Transition to Low-Carbon Propulsion
- Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

Real-Time System-Wide Safety Assurance
- Develop an integrated prototype of a real-time safety monitoring and assurance system

Assured Autonomy for Aviation Transformation
- Develop high impact aviation autonomy applications

An Identified National Research Need

- Recent National Research Council reports identify NASA led flight research and a low-boom demonstrator X-plane as key elements of achieving regulatory change and inspiring our next generation.

“By embarking on flagship aeronautical flight research programs that advance the frontiers of flight, NASA can contribute to inspiring the next generation of scientists and engineers.”

“NASA’s flight research programs are most effective when they are focused on achieving innovation in aeronautics.”

“...given the progress in low-boom technology that has been demonstrated over the past decade and in light of this research challenge being the principle remaining barrier to routine supersonic operations, NASA together with the FAA could proceed immediately with an integrated technology experimental aircraft program to validate low-boom acoustic ground signatures and establish a set of quantitative criteria for the sonic boom footprint over land.”

“Sonic boom is the major barrier to the development of supersonic business jets (SBJs) and a major, but not the only, barrier to the development of supersonic transports with overland capability... While NASA should have its eye on the prize – supersonic commercial transports – it is still quite appropriate for NASA to conduct sonic boom research, even when related to SBJs.”
Sonic Boom Ground Exposures

- Cruise boom signature
- Transition focus boom signature
- Primary boom carpet
- Secondary boom carpet
- Secondary boom signature
- Lateral cutoff boom signature

\[\Delta p \]
Low Boom Dive

- Contrail stops when engines to idle
- Boom hits 1-1/2 to 2 minutes later
Low Sonic Boom Supersonic Dive Video from Back Seat of F-18B
Boom Placement Considerations

- Low-boom dive maneuver results in large area of low magnitude N-waves, but smaller parabola of loud focused booms
- Flight will be planned to demonstrate varying levels of low magnitude N-waves
- Flight plan determined by target boom level and prevailing weather
 - Launch preflight weather balloon
 - Calculate maneuver waypoints
 - Avoid booming sensitive areas
Community Response Pilot Test (Community Exposure Test Element)

- Expose Edwards Air Force Base (EAFB) housing area to low-amplitude sonic booms
 - Two-week test period (Nov. 2011)
 - Range of boom amplitudes and number of booms/day
 - 2 Contractor teams (Wyle Laboratories and Fidell Assoc.) plus NASA in-house team

- Noise exposure
 - 3 low-boom target levels: 0.1, 0.3, 0.5 psf
 - 4-15 booms/day, 110 total booms
 - Desired range of sonic boom amplitudes was achieved

- Exposure range enables comparison with previous sonic boom studies
 - Non-WSPR high-amplitude booms also occurred during test period

- Sonic boom data analysis
 - Data for each boom at each monitor analyzed
 - Psychoacoustic metrics calculated

Pilot test to prepare for future sonic boom community response studies
Community Response Methods

• Types of information collected
 – Residents’ responses to each boom
 – Residents’ daily responses to multiple booms

• Resident reactions collected by one of 3 methods
 – Paper
 – Website
 – Smartphone

• Assessment of different methods
 – Test new data collection technologies
 – Evaluate data quality and completeness
 – Examine efficiency and cost-effectiveness
 – Assess respondent experience
Sonic Boom Basics: The N-Wave

Measured Sonic Boom

Overpressure Δp

Duration

Rise Time

Factors in N wave annoyance

Sullivan 1990

A = 1.3. psi
Commercial Supersonic Flight and Sonic Boom
A Brief History

1947 – X-1 breaks the sound barrier
1954 – First SST concept studies
1961 – St. Louis sonic boom study
1962 – Concorde agreement
1963 – US SST announced
1964 – Oklahoma City sonic boom study
1969 – Concorde first flight
1971 – US SST canceled
1973 – US prohibits overland flight
1976 – First commercial Concorde flight
2003 – Concorde retired
First Flight Demonstration of Shaped Sonic Boom
DARPA-NASA SSBD-SSBE Project 2003

Back-to-Back Flights of Modified and Unmodified F-5s

First-Ever Shaped Sonic Boom Recorded 27 August 2003

Shock Thickening Adjusted
Ground Boom Signature Comparisons

Design

Flight Results

First measurement of shaped sonic boom

SSBD Flight 9
August 27, 2003
06:46:32 7602 PDT
NASA Dryden
BADS West