Testing and Modeling of the Mars Atmospheric Processing Module

Anthony Muscatello, Paul Hintze, Anne Meier, Elspeth M. Petersen, Jon Bayliss, Ricardo Gomez Cano, Rene Formoso, Malay Shah, Jared Berg, Bruce Vu, Alexander Walts, and Rupert Lee

NASA – Kennedy Space Center

AIAA SPACE 2017
Orlando, FL
September 12-14, 2017
Outline

• Introduction
• CO₂ Freezer and Sabatier Subsystem Testing
• Sabatier Temperature and Catalyst Testing
• CO₂ Freezer Testing and Modeling
• Conclusions
• Acknowledgments
MARCO POLO Project

- **ISPP: In Situ Propellant Production**
 - Demonstrate production of Mars Sample Return propellant
 - Reduce risk for human Mars missions
- **MARCO POLO - Mars Atmosphere and Regolith Collector/Processor for Lander Operations**
 - Started in 2011
 - Continues as the *Mars ISRU Pathfinder* project
- **The Atmospheric Processing Module (APM)**
 - Mars CO₂ Freezer Subsystem
 - Sabatier (Methanation) Subsystem
- Collect, purify, and pressurize CO₂ (≥88 g/h)
- Convert CO₂ into methane (CH₄) (32 g/h) and water (72 g/h) with H₂
- Other modules mine regolith, extract water from regolith, purify the water, electrolyze it to H₂ and O₂, send the H₂ to the Sabatier Subsystem, and liquefy/store the CH₄ and O₂

Lander Design Concept

Atmo Processing Module:
- CO$_2$ capture from simulated Mars atmosphere (KSC)
- Sabatier converts H$_2$ and CO$_2$ into Methane and water (KSC)

Water Processing Module:
- Currently can process 520g/hr of water (max 694 g/hr) (JSC)

Liquefaction Module:
- Common bulkhead tank for Methane and Oxygen liquid storage (TBD)

C&DH/PDU Module:
- Central executive S/W
- Power distribution (JSC)

Soil Processing Module:
- Soil Hopper handles 30 kg (KSC)
- Soil dryer uses CO$_2$ sweep gas and 500 deg C to extract water (JSC)

Water Cleanup Module:
- Cleans water prior to electrolysis
- Provides clean water storage (KSC)

RASSOR 2.0:
- Excavator
- Provides feed to Soil Dryer (KSC)

1 KW Fuel Cell and consumable storage (JSC & GRC):
- Using metal hydride for H storage due to available
- 1 KW No Flow Through FC (GRC)
- 10 KW main power FC not shown (JSC)

3m x 3m octagon lander deck
Atmospheric Processing Module

- Sabatier Reactor
- Copper Heat Exchanger
- Membrane Module
- Avionics
- Recycle Pump
- CO₂ Storage Tanks
- CO₂ Freezers and Chiller
- CO₂ Freezers
Previously demonstrated nominal operations of both the CO₂ Freezers and the Sabatier Subsystem (Earth & Space 2014 and 2016 Conferences)

- Measured power to freeze CO₂ at 0.22 W/kg (108% of theoretical) → 680 W for 3.1 kg CO₂/h (full scale ISRU module)
 - Froze ≥70% of incoming CO₂ @ ~100 g/h
- Sabatier subsystem produced 32 g CH₄/h at >99.9% pure
- Water production rate = 64-70 g/h
 - Not due to vapor in CH₄ or in membrane module
 - Still looking for missing water
CO₂ Freezer and Sabatier Subsystem Testing (Cont.)

- Tested CO₂ Freezers @ 1.0-1.6 SLPM (nominal 1.2 SLPM)
 - Froze 87-71% of incoming CO₂
- Tested Sabatier subsystem at 0.3-1.2 SLPM (nominal 0.75 SLPM)
 - 550°C maximum temperature observed
 - CO observed in product @ higher feed rates
- Performed “virtual” integrated test (“Dust to Thrust”) w/other KSC hardware in Sept. 2016
 - Very successful
 - Met goals
 - CO₂ flow rate was 11% high due to Mass Flow Controller issues
 - https://www.youtube.com/watch?v=crLm_eL3wdU (142,000 views so far!)
- Plan partial integrated KSC hardware test in October 2017
 - WCM on lander, transferring water through DTAU to a rover w/3 tanks: water, simulated liquid methane, and simulated liquid oxygen
 - APM transmitting and receiving data

Results of the APM Virtual Integrated Test

<table>
<thead>
<tr>
<th></th>
<th>Test Duration, 6 h, 50 min</th>
<th>Total</th>
<th>Average Flow Rate</th>
<th>Average Mass Rate</th>
<th>Target</th>
<th>Delta, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane Production</td>
<td>243 liters</td>
<td>0.831 SLPM</td>
<td>35.6 g/h</td>
<td>32 g/h</td>
<td>+11.1%</td>
<td></td>
</tr>
<tr>
<td>Water Production</td>
<td>516.1 g</td>
<td>-</td>
<td>75.5 g/h</td>
<td>72 g/h</td>
<td>+4.9% (-5.8%)</td>
<td></td>
</tr>
<tr>
<td>Calculated CO₂</td>
<td>0.831 SLPM</td>
<td>0.750 SLPM</td>
<td>+11.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure Description: Pathfinder Virtual Integration Demonstration Set-Up Performed 09/29/2016
Sabatier Temperature and Catalyst Testing

- Normal operating temps = 453-467°C
- At 1.25 SLPM CO₂, T = 586°C
- CO observed during test and subsequent tests
- Ru/Al₂O₃ catalyst much lighter w/broken pellets
- Sintering possible @>500°C
- Thermal shock investigated @450 and 600°C
- High temperatures experienced by the pellets or the rapid increase in temperature was the driving factor in the change in performance and not other factors such as poisoning
New NASA ISRU Project formed to develop full-scale Mars ISRU system

Organized existing resources to develop physics-based models for scale-up

Initiated modeling and testing of CO₂ Freezer and the Sabatier reactor

Developed CFD/FEA/VOF (Volume of Fluid) model of existing CO₂ freezer and “Ferris Wheel” cold head

Sabatier reactor modeling reported at ICES-2017 and TFAWS

– Good agreement between model and experimental results
CO₂ Freezer Testing and Modeling (Cont.)

• Opened freezing chamber to observe actual dry ice distribution on Ferris Wheel cold head
• Designed, built, and tested alternate cold heads at long durations

Dry ice and water ice frost accumulation on the Ferris Wheel cold head (T = 1.4 h)

“Starburst” cold head, a precursor to the Ferris Wheel cold head

“Branching” cold head CAD drawing & 3D printed version (GRCop-84) from MSFC mounted on cryocooler

CAD drawing of the “Tuning Fork” cold head w/25 fins, EDM machined version, & unit installed on cryocooler
Flow-Considered Steady-State Model Predictions

• Ferris Wheel model
 – Did not completely fill in channels
 – Little dry ice at attachment screw
 – Very thin layer on outer walls

• Branching model
 – Did fill in channels
 – Little dry ice on top
 – Thin layer on outer walls

Drawings of the Ferris Wheel cold head (left) and the Branching design (right) with predicted dry ice accumulations at steady-state
No-Flow-Considered Steady-State Model Predictions

- Ferris Wheel model
 - Did completely fill in channels
 - Heavy dry ice at attachment screw
 - Thicker layer on outer walls

- Branching model
 - Did fill in channels
 - Thick dry ice on top
 - Thin layer on outer walls

Drawings of the Ferris Wheel cold head (left) and the Branching design (right) with predicted dry ice accumulations at steady-state
Comparison of Predicted and Actual Dry Ice Mass at Steady State for Cold Head Designs

<table>
<thead>
<tr>
<th>Property or Simulation Type</th>
<th>Ferris Wheel, g</th>
<th>Branching, g</th>
<th>Branching (Lattice), g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>265 g</td>
<td>NA</td>
<td>843 g</td>
</tr>
<tr>
<td>Cooling Time to 150 K</td>
<td>8.5 min</td>
<td>NA</td>
<td>45 min</td>
</tr>
<tr>
<td>Flow-Considered</td>
<td>207 g</td>
<td>296 g</td>
<td>312 g</td>
</tr>
<tr>
<td>No-Flow-Considered</td>
<td>339 g</td>
<td>388 g</td>
<td>404 g</td>
</tr>
<tr>
<td>Experimental Results</td>
<td>406 g (7.0 h)</td>
<td>NA</td>
<td>502 g (6.33 h)</td>
</tr>
</tbody>
</table>

- Model is better for cold head comparisons vs. explicit predictions for an individual design
- Improvements between the Branching and the Ferris Wheel designs are on the order of 15 – 50%
 - Actual improvement lies between these two extremes
- Rate of accumulation may be estimated by normalizing the results when compared to completed steady-state experimental runs
• CO$_2$ Performance Comparison – Test Results vs. “Theoretical Cold Head”
 - Initial Tuning Fork freezing rate closest to hypothetical “Theoretical 2” rate
 - Exceeded 110 g/h for 120 min; averaged 90 g/h for 5 h
• **Cycle Performance Comparison**
 • Ideal cycle time for the Tuning Fork is 173 min
 − 80.5 min actual freezing time
 − Average collection rate = 41.0 g/h
 − Pair of cryocoolers = 82 g/h

• **CO₂ collection cycle overview**
• **Optimization:**
 − Minimize cool down time (reduce mass, maximize thermal conductivity)
 − Maximize freezing rate (increase area, maximize thermal conductivity)
 − Sublimation rate (supply sufficient heat to close cycle time)
Conclusions

• CAD models provided info for modeling
• Modeling of the CO$_2$ freezing process has provided great insight into ways to optimize the process
• Sabatier reactor modeling gives good agreement of predictions with test results
• Sabatier catalysts require protection from thermal shock
• Excellent progress has been made in preparing for designing full-scale CO$_2$ freezers and Sabatier reactors in FY18
Acknowledgments

• Multiple NASA interns in addition to the coauthors
• Space Technology Mission Directorate (STMD) Game Changing Development (GCD), Next Generation Life Support (NGLS) funding
• KSC Continuing Technical Competence (CTC) and Independent Research and Technology Development (IR&TD) projects.
• We also especially thank Omar Mireles and Zachary Jones of MSFC for providing Additive Manufacturing cold heads
Questions?

MARCO POLO/Mars ISRU Pathfinder Modules

APM (KSC) CO₂/Ar/N₂(g) WCM (KSC) H₂O(g)

H₂O(l) H₂O(l)

CH₄(g) Soil

H₂(g) SPM (JSC)

H₂O(l) Soil

O₂(g) RASSOR (KSC)

WPM (JSC) Hopper/Lander (KSC) [CryoCart/Thruster (JSC)]