Summary of 2017 NASA Workshop on Assessment of Advanced Battery Technologies for Aerospace Applications

Dr. Ajay Misra
NASA Glenn Research Center

Presentation at 2018 SciTech Forum, Kissimmee, FL, January 11, 2018
NASA Workshop on Battery Technologies for Future Aerospace Applications, Cleveland, OH, August 16-17, 2017

Key Objectives of the workshop:
• Assess the battery needs for future aerospace missions
• Assess the state of battery technology and projected technology advances
• Assess the need for additional investments for future aerospace missions.

Participants:
• 109 participants, 85 non-NASA
• Leaders from DOE, DOE labs (ANL, PNNL, ORNL), Aerospace companies (Boeing, Airbus, Bell Helicopters, GE, P&W, Honeywell), Automotive companies (GM, Chrysler), Battery manufacturers (cell and pack manufacturers), academia, small businesses (many funded by venture capitalists)

Sessions:
• First day – 19 short (~20 min) overview presentations
• Second day morning – 3 breakout sessions – (1) requirements, (2) chemistry and materials, (3) packing and integration

Primary focus was on batteries for Electrified Aircraft Applications
What is Included in This Presentation

• Findings from the workshop

• Additional facts gathered from multiple sources after the workshop
 – System analysis
 – Recent reviews of battery technology
State-of-the-art: Li-Ion Battery

SOA:
- Cell: 250 Wh/kg
- Pack: 150 – 170 Wh/kg

Potential:
- Cell: 300 Wh/kg
- Pack: ~200 Wh/kg

Typically 30 - 40% decrease
<table>
<thead>
<tr>
<th>Cell level</th>
<th>Pack level</th>
<th>Notional Battery Requirements for Different Classes of Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 Wh/kg</td>
<td>200 miles, all electric</td>
<td>2-3 passenger, CTOL, 200 miles, all electric</td>
</tr>
<tr>
<td>300 Wh/kg</td>
<td>40-50 miles, all electric</td>
<td>2 – 3 passenger, VTOL, 40-50 miles, all electric</td>
</tr>
<tr>
<td>~400 Wh/kg</td>
<td>60 – 200 miles, all electric</td>
<td>6 – 10 passenger, CTOL, 300 – 600 miles, all electric</td>
</tr>
<tr>
<td>~600 Wh/kg</td>
<td>> 300 miles, all electric</td>
<td>4 – 10 passenger, VTOL, 60 – 200 miles, all electric</td>
</tr>
<tr>
<td>~1000 Wh/kg</td>
<td>> 750 Wh/kg</td>
<td>50 – 70 passenger, CTOL, > 300 miles, all electric ??</td>
</tr>
<tr>
<td>737 type hybrid electric aircraft with at least 900 mile range, CTOL</td>
<td>Extended range for everything in Box 3</td>
<td></td>
</tr>
<tr>
<td>300 Wh/kg</td>
<td>Hybrid electric, 100 miles</td>
<td>5 passenger, CTOL, 300 miles, hybrid electric ??</td>
</tr>
<tr>
<td>400 - 500 Wh/kg</td>
<td>Hybrid electric, 100 miles</td>
<td>VTOL - Multi-mission helicopter, hybrid electric, 100 miles ??</td>
</tr>
<tr>
<td>> 750 Wh/kg</td>
<td></td>
<td>Extended range for everything in Box 2</td>
</tr>
</tbody>
</table>

Current capability, 150 – 170 Wh/kg

Pack level:

- 250 Wh/kg
- 300 Wh/kg
- ~400 Wh/kg
- ~600 Wh/kg
- ~1000 Wh/kg

Cell level:

- 250 Wh/kg
- 300 Wh/kg
- ~400 Wh/kg
- ~600 Wh/kg
- ~1000 Wh/kg

Notional Battery Requirements for Different Classes of Aircraft

Cell level

Pack level

- Current capability, 150 – 170 Wh/kg

- 2-3 passenger, CTOL, 200 miles, all electric
- 2 – 3 passenger, VTOL, 40-50 miles, all electric
- 6 – 10 passenger, CTOL, 300 – 600 miles, all electric
- 4 – 10 passenger, VTOL, 60 – 200 miles, all electric
- 30 passenger, CTOL, 300 miles, all electric
- 50-70 passenger, CTOL, 300 miles, hybrid electric
- Light utility helicopter, 100 miles, hybrid electric
- Extended range for everything in Box 1
- 50 – 70 passenger, CTOL, > 300 miles, all electric ??
- 100 -150 passenger, CTOL, 300 miles, hybrid electric ??
- VTOL - Multi-mission helicopter, hybrid electric, 100 miles ??
- Extended range for everything in Box 2
- 737 type hybrid electric aircraft with at least 900 mile range, CTOL
- Extended range for everything in Box 3
Other Requirements in Addition to High Specific Energy

- Specific power (1 kW/kg for most applications, although some applications might require 2-3 kW/kg)
- Cycle life (1000-2000 ??)
- Discharge rate (C rating)
- Speed of charging
- Calendar life

System analysis required to identify detailed requirements
Beyond Li - Ion

![Bar chart showing theoretical energy density (Wh/kg) for different battery types.]

- **Today Li-ion**: Maximum cell: ~300 Wh/kg
- **Li Metal- High voltage cathode**: Maximum cell: ~500 Wh/kg?
- **Li-S**: Maximum cell: ~600 – 700 Wh/kg?
- **Li-air**: Maximum cell: ~900 – 1000 Wh/kg?
Li Metal With Liquid Electrolyte and Conventional cathode

Conventional Li-Ion
- Current Collector
- Cathode
- Separator
- C, C-Si Anode
- Current Collector

Li Metal
- Current Collector
- Cathode
- Separator
- Li Metal Anode

Claims of 400 – 450 Wh/kg at cell level by startup companies

- Probably low cycle and long-term life (no publicly available data)

- Optimistic claim for commercial introduction in electric vehicles in 2020 (????) – might need serious interest from a major manufacturer

- Focus of DOE BAT-500 program

Except for Li metal anode, everything else very similar to SOA Li-ion battery

300 Wh/kg achievable at pack level
Progress to date:
- 300 – 400 Wh/kg achieved at cell level, low cycle life
- 250 Wh/kg at pack level, low cycle life
- 180 Wh/kg at cell level with high cycle life

Challenges:
- Limited cycle life (< 300 cycles)
- High self discharge rate
- Reactions not well understood

Maximum achievable specific energy at pack level is < 500 Wh/kg
Li – Air Battery

- Limited cycle life
- Complex mechanical system for introduction of oxygen
- Maximum achievable specific energy at pack level no better than Li metal with liquid electrolyte and conventional cathode

ANL study
Current Status:

- Significant world-wide interest (Strong belief that solid state is the future) - Eliminates safety challenges associated with liquids, provides better packing and stack designs
- Significant progress made in development of solid ceramic electrolytes with high ionic conductivity
- Solid state battery with solid state polymer electrolyte – 250 Wh/kg at cell level, potential for 400 Wh/kg at cell level (required 180°C operating temperature)

Challenges:

- Interfacial instability and lack of understanding of various interfacial phenomena
- Mechanical stability
- Low cycle life contributed by interfacial and mechanical instability
- Commercially scalable process for manufacturing of thin films
- Development of full cell

Significant Promise
Notional Progression of Battery Capability at Cell Level

Li Metal

- **300 – 400 Wh/kg**
 - Li metal anode, sulfur cathode, liquid or solid electrolyte
 - Li metal anode, advanced cathode (High Ni - NMC or sulfur), Liquid electrolyte
 - Li metal anode + high temperature polymer electrolyte

- **400 – 500 Wh/kg**
 - Li metal, all solid state

Li ion

- **300 Wh/kg**
 - Si anode, advanced cathode (e.g., High Ni), liquid electrolyte

SOA – 250 Wh/kg at cell level
Projected Advances in Battery Technology

Rate of increase in specific energy is typically on the order of 5 – 8% per year. Specific energy loss from cell to pack is typically 50 to 60%.

Assuming 8% increase per year at cell level.

Innovation required in:
- New chemistries and materials for cells
- Pack design and integration
Key Takeaways

- DOE, battery industry, academia, National Labs will drive to 300 Wh/kg at pack level (~400 Wh/kg at cell level) for automotive and industrial applications, but will not be focused on electric aircraft applications
 - 2022 – 2025 timeframe likely (optimistic ??)
 - Need to demonstrate applicability to aircraft through verification of performance, safety, and integration
- Beyond the 400 Wh/kg capability at cell level, aeronautics community can focus on developing batteries with 600 Wh/kg specific energy at cell level (400 – 500 Wh/kg at pack level), which is achievable and not impossible
 - Not current focus for DOE, battery industry, and national labs
- Specific energy on the order of > 700 Wh/kg at pack level is extremely difficult to achieve with the current knowledge, almost impossible at this time
- Need detailed system level analysis for different classes of aircraft and different missions

Aeronautics community lead is necessary to champion development of aircraft materials, cells and packs
Potential Scenario for Electrified Aircraft

Cell level
- 250 Wh/kg

Pack level
- Current capability, 150 – 170 Wh/kg
- 300 Wh/kg
- 400 - 500 Wh/kg
- > 750 Wh/kg

Box 1
- Potentially achievable in 2022-25 timeframe with non-NASA investment
- Need validation for aircraft application
- 2-3 passenger, CTOL, 200 miles, all electric
- 2 – 3 passenger, VTOL, 40-50 miles, all electric
- 6 – 10 passenger, CTOL, 300 – 600 miles, all electric

Box 2
- Challenging, but achievable in 2030 timeframe, will need leadership from aeronautics community,
- 50 – 70 passenger, CTOL, > 300 miles, all electric ??
- 100 -150 passenger, CTOL, 300 miles, hybrid electric ??
- VTOL - Multi-mission helicopter, hybrid electric, 100 miles ?
- Extended range for everything in Box 1

Box 3
- Extremely challenging, may be impossible with current knowledge
- 737 type hybrid electric aircraft with at least 900 mile range, CTOL
- Extended range for everything in Box 3

Potential Scenario for Electrified Aircraft

Pack level
- Current capability, 150 – 170 Wh/kg
- 300 Wh/kg
- 400 - 500 Wh/kg
- > 750 Wh/kg

Potential Scenario for Electrified Aircraft

Pack level
- Current capability, 150 – 170 Wh/kg
- 300 Wh/kg
- 400 - 500 Wh/kg
- > 750 Wh/kg

Current capability, 150 – 170 Wh/kg

Pack level
- Current capability, 150 – 170 Wh/kg
- 300 Wh/kg
- 400 - 500 Wh/kg
- > 750 Wh/kg

Potential Scenario for Electrified Aircraft

Pack level
- Current capability, 150 – 170 Wh/kg
- 300 Wh/kg
- 400 - 500 Wh/kg
- > 750 Wh/kg
Potential for Innovation in Packing and Integration

• Specific energy loss from cell to pack is typically on the order of 30 – 40 %, could be as high as 50% for some applications - opportunity to increase specific energy at pack level through innovation in packing and integration

• Potential concepts:
 – Lightweight container structure (e.g., cellular, lattice block)
 – Multifunctional structures with load carrying capability for packaging materials
 – Advanced thermal management techniques (e.g., phase change materials if cost is not a factor, high conductivity materials)
 – Integrated thermal management – system approach to cool battery packs
 – Polymer heat exchangers
 – Larger cells

• Innovation in battery health management – improved techniques/models (including move to software-based system) for state-of-charge and state-of-health estimation

Aeronautics community needs to lead innovation in packing and integration specific to aircraft applications
Non-Li Battery System to Watch

- Al – air
- Mg – air
- Zn-air
- Flow batteries
Role of Aeronautics Community in Battery Development

• Accelerate development of 300 Wh/kg battery pack (400 Wh/kg cell) for electrified aircraft application by
 – Developing innovative packing technologies
 – Studying safety of battery system and optimizing battery system for safety
 – Generating performance data under aircraft operating conditions and optimizing battery system for balancing performance and safety
 – Developing and validating battery performance and durability models

• Provide leadership for development of 400 – 500 Wh/kg battery pack (600 Wh/kg cell) system leveraging resources in Dept. of Energy, National Labs, battery industry, and academia

• Conduct system analysis to identify battery requirements for various classes of aircraft and various missions