Microbial Monitoring and the Risk of Infectious Disease aboard the International Space Station

C. Mark Ott, NASA Johnson Space Center

ABSTRACT

The International Space Station (ISS) is a semi-closed habitat in low Earth orbit with environmental conditions provided by an advanced life support system that controls temperature and recycles air and most of the potable water. The crew’s activities, such as eating, sleeping, hygiene, and laboratory research, are performed in relatively close proximity. Research in the laboratory includes a myriad of experiments, including those with rodents, plants, and pathogenic microorganisms. Despite these conditions, in-flight monitoring of ISS indicates that the microbial diversity is similar to homes on earth. Accordingly, the crew is generally very healthy, however infectious disease does occur and potential routes of infection by obligate and opportunistic pathogens cannot be completely prevented. Determining the extent of this risk is further complicated, as microorganisms can alter their characteristics in response to spaceflight culture, as exemplified by the increase in virulence of the enteric pathogen *Salmonella enterica* Typhimurium during spaceflight compared to otherwise identical cultures grown on Earth. Taken together, these factors suggest a need for continued microbiological monitoring and research to understand and mitigate the risk of infectious disease during long duration missions.
ABSTRACT

The International Space Station (ISS) is a semi-closed habitat in low Earth orbit with environmental conditions provided by an advanced life support system that controls temperature and recycles air and most of the potable water. The crew's activities, such as eating, sleeping, hygiene, and laboratory research, are performed in relatively close proximity. Research in the laboratory includes a myriad of experiments, including those with rodents, plants, and pathogenic microorganisms. Despite these conditions, in-flight monitoring of ISS indicates that the microbial diversity is similar to homes on Earth. Accordingly, the crew is generally very healthy, however infectious disease does occur and potential routes of infection by obligate and opportunistic pathogens cannot be completely prevented. Determining the extent of this risk is further complicated, as microorganisms can alter their characteristics in response to spaceflight culture, as exemplified by the increase in virulence of the enteric pathogen Salmonella enterica Typhimurium during spaceflight compared to otherwise identical cultures grown on Earth. Taken together, these factors suggest a need for continued microbiological monitoring and research to understand and mitigate the risk of infectious disease during long duration missions.

THE RISK OF ASTRONAUT INFECTION

Positives
- Preflight medical exams and medical consult throughout a mission
- Preflight crew quarantine
- Stringent microbiological monitoring of spacecraft and its cargo

Negatives
- Small enclosed environment with recycled air/water
- Limited medical diagnostics and treatment on board
- Limited environmental remediation capabilities
- Dysfunctional aspects of the crew immune system
- Unique alterations of microbial characteristics, including virulence

INFECTION DISEASE DURING SPACEFLIGHT

Infectious disease rates are difficult to determine during spaceflight missions, as disease incidence is usually based on verbal communication of symptomology, such as "rash," "dry hacking cough," or "diarrhea."

Examples of diseases attributed to microorganisms during spaceflight missions
- Upper respiratory infections
- Urinary tract infections
- Ear infections
- Various fungal infections
- Herpes Zoster
- Stye
- Rashes & skin disorders
- Allergic reactions
- Gastroenteritis

REFERENCES