Qualification & Certification of Additively Manufactured Parts for NASA Applications

NASA Safety Center, Webinar
December 11, 2018
Welcome and Webinar Objectives

Welcome to Qualification & Certification of Additive Manufactured (AM) Parts for NASA Applications.

This webinar is intended for our NASA Safety and Mission Assurance (S&MA) community to support their significant role in additive manufactured hardware for NASA applications.

Webinar Objectives:

- Reinforce a basic understanding of AM processes.
- Become familiar with MSFC-STD-3716 requirements for metal spaceflight hardware.
- Review key quality assurance products from MSFC-STD-3716.
- Learn about important AM defect types and how to detect them.
- Learn about the challenges and best practices for nondestructive evaluation (NDE) of metal AM parts.
Section 1

Background to Additive Manufacturing
• Additive Manufacturing (AM) is revolutionizing aerospace design and manufacturing.

• AM is the process of building hardware layer by layer with fewer parts yet more complex designs. This reduces costs and waste, while enabling unprecedented design freedom and challenging the order of the traditional aerospace hardware development cycle.

• For existing designs, the cost and time needed to make a part can be reduced, especially for one-of-a-kind or limited quantity production runs common in NASA’s programs. Repair of existing hardware is also a possible future application.

• For new designs, reliance on meticulous analysis to mitigate part failure may be reduced since prototype hardware designs can now be iterated (during Design, Development, Test and Evaluation) with reduced cost and impact to schedule.
Background

• While other AM processes are mentioned in this webinar, powder bed fusion (PBF) is the current leader among different AM processes for making quality metal aerospace hardware.

• In PBF, metal powder is fused layer-by-layer using a high-energy electron or laser beam. After one layer is fused, a new powder layer is spread on the newly solidified surface, and that layer fused. The process continues until the part rests in a bed of unfused powder, giving PBF its name.

• Multiple factors affect AM part quality:
 − Feedstock consistency
 − Laser power, hatch width, scan rate
 − Thermal conditions during build
 − Build chamber atmosphere
 − Post-processing
 − Worker training
 − Equipment calibration and maintenance
 − And so forth…
Background

- For NASA, Agency standards for the production of consistent, high-quality metallic spaceflight hardware are under development. The only currently available standard is MSFC-STD-3716.

- Requirements in MSFC-STD-3716 establish a methodology to control process variables and manage the risks associated with this new technology.

- A companion specification, MSFC-SPEC-3717, provides detailed procedures for:
 - Equipment calibration and control
 - Personnel training
 - Qualified Metallurgical Process (QMP) development
Definition of Additive Manufacturing
(ISO/ASTM 52900-15 Terminology for AM)

additive manufacturing (AM), n— the process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies.

DISCUSSION—The meaning of “additive”, “subtractive” and “formative” manufacturing methodologies are further discussed in Annex A1.
Additive Manufacturing Processes

- **Powder Bed Fusion (PBF)** via:
 - Selective Laser Sintering (SLS)
 - Selective Laser Melting (SLM)
 - Electron Beam Melting (EBM)

- **SLM** and **EBM** parts are **fully** melted during processing.
- **SLS** parts are **partially** melted (sintered) during processing.
- Note: Direct Metal Laser Sintering (DMLS), which despite its name, involves full melting of the powder, and thus production of a fully dense part, is not a true sintering process.

Table: Additive Manufacturing Processes

<table>
<thead>
<tr>
<th>AM Process Category</th>
<th>AM Process Type</th>
<th>Material</th>
<th>Binder or Fusion Mechanism</th>
<th>Feedstock Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder Jetting</td>
<td>Blown Powder</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Ion Fusion</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Formation</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Directed Energy</td>
<td>Electron Beam</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Manufacturing</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Material Extrusion</td>
<td>Fused Deposition</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Modeling</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Multiphase</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Jet Solidification</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Material Jetting</td>
<td>Laser Sintering</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Powder Bed Fusion</td>
<td>Laser Melting</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Electron Beam</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Melting</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Sheet Lamination</td>
<td>Laminated Object</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Manufacturing</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Ultrasound</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Consolidation</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Vat Photo-polymer</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

![Image](image-url)
Additive Manufacturing Processes

• **Powder Bed Fusion (PBF)**
 - A moving head \(a\) selectively binds the surface of a powder bed \(e\).
 - A moving platform \(f\) progressively lowers the bed.
 - The solidified object \(d\) rests inside the unbound powder.
 - New powder is added to the bed from a powder reservoir \(c\) by means of a powder scraper (recoater blade) \(b\).

• A thin layer (≤ 0.001 in.) of metal powder is melted (or sintered) by finely focused laser rastering across the build area.

• The scale of SLM is limited:
 - Common: 250×250×325 mm
 - Large: 800×400×500 mm
 - New target: >1000 mm dimension

Additive Manufacturing Processes

- Powder Bed Fusion (PBF)
- Combustion chamber liner fabrication showing the contouring (outside edges) pass (left), in-fill pass (middle), and finish liners (right)

Additive Manufacturing Processes

- Directed Energy Deposition (DED) via:
 - Electron Beam Additive Manufacturing (EBAM)
 - Electron Beam Free Form Fabrication (EBF³)

- Uses numerous welding wire products (Ti, Al, Ni, and Co alloys, 300 Series SS, niobium, tungsten, tantalum, and molybdenum)
- Faster than PBF
- Part size limited by vacuum chamber size
- Near 100% wire feed usage efficiency
- Functionally graded materials (FGMs) possible
- Blown powder can be used if a laser energy source is used.
Additive Manufacturing Processes

- **Directed Energy Deposition (DED)**
 - Uses wire feedstock and an electron beam (EB) or plasma arc heat source to deposit metal.
 - Produces a near-net shape part inside a vacuum chamber.
 - Once the part reaches near-net shape, it undergoes finish heat treatment and machining.

Additive Manufacturing Processes

- **Directed Energy Deposition (DED)**
 - Make components larger than those made using PBF.
 - Used to close out coolant channels for nozzles and chambers, for example, Laser Wire Direct Closeout (LWDC) structures.
 - Also have laser wire (previous slide), blown powder (below), arc-weld, and electron beam wire deposition methods.

DED blown powder deposition: A. Channel wall nozzle with integral channels, B. as-built integral channels, C. in-process DED fabrication of subscale nozzle jacket, D. Final-machined nozzle jacket.

Metal Additive Manufacturing Processes

- NASA has been investigating various AM methods for liquid rocket engine channel wall nozzles to further reduce cost and schedule. The methods being evaluated are targeting increased scale required for current NASA and commercial space programs, well beyond SLM capabilities.

Post-Processing

- As-built microstructures are dominated by the characteristics of the melt pool (top micrographs).
- Following heat treatment and/or Hot Isostatic Pressing (HIP), the microstructure recrystallizes and resembles the wrought microstructure, with some expected grain size variation (bottom micrographs).

Post-Processing

• As-built parts also show the presence of voids (left micrograph) caused by low power, high scan rate, attenuated laser (from fogging of the laser lens, for example), or in the case shown below, spatter (molten ejecta) falling on surface during build. After heat treatment and/or HIP, such lack of fusion (LOF) defects are closed (right micrograph):

Processing and Post-Processing Relative to AM part life cycle

Processing
- Concept
 - Design for Powder Bed Fusion
 - Build box limitations
 - Self-supporting design
 - Powder and support removal
 - Finishing allowances
 - Surface-texture requirements
- Build Lot Execution
 - Platform selection
 - Receiver selection
 - Powder selection
 - Build parameters
 - Build data collection
 - Chamber environment
 - Restart policies
 - Post-build
 - Powder removal
 - Platform removal
 - Repair policies
- Raw Part Inspection
 - Visual
 - Radiography or CT
 - Metallurgical
 - Dimensional

Build
- Equipment
 - calibration
 - maintenance
 - equipment vendor
 - software versions
- Thermal Processing
 - part and lot acceptance criteria
 - stress relief
 - HIP
 - Solution treat or anneal
 - Precipitation age
- Finishing Operations
 - Machining
 - Bead/plug blast
 - Pouring
 - Nucleting/polishing
 - Etching
 - Cleaning

Post-processing
- Part
 - Dimensional
 - Surface texture
 - Final part PT, ET, UT, CT
 - Lot acceptance tests/results
 - Process certification records

Quality Management System (QMS)
- Virgin Powder
 - Qualification
 - Certification/analysis
- Recycled Powder
 - Sieving
 - Environmental control
 - Re-use limitations

Part Categories
- Design
 - Allowables
 - Structural Assessment
 - Material Properties
 - Build
 - Design
 - Margins
 - Part Classification
 - Integrity of solid
 - Model checking
 - Version control
 - As-built part NDE

Post-processed part NDE
- Final Inspection/Acceptance
 - Proof testing
 - Packaging

Hand-off From Design to Build
- Build Vendor
 - Quality system
 - Qualification
- Blend Lot
 - Chemistry
 - Molding
 - Distribution
- Feedstock
 - Planning for all operations from Concept to Part
 - Written prior to handoff from design to build

Precursor Materials
Section 2

Additive Manufacturing,
Examples of Aerospace Applications
Metal Aerospace AM Parts

Example 1

NASA MSFC rocket *injectors* made by traditional means took more than a year to make, but with AM took less than four months, resulting in a 70% reduction in cost.

• Using traditional manufacturing methods, 163 parts are made, which must then be assembled by welding.

• With AM, only 2 parts are needed, saving time and money, and allowing engineers to enhance rocket engine performance while being less prone to failure.

• Liquid Rocket Engines with 100 to 35,000 lb₉ thrust have been manufactured with AM hardware, including injectors, injector faceplates, regeneratively-cooled combustion chambers and nozzles, gas generators, preburners, and augmented spark igniters.

Metal Aerospace AM Parts

Example 1 (cont.)

SLM Injectors fabricated and tested at MSFC.

NASA MSFC has also built channel-cooled combustion chambers using L-PBF, but that use bi-metallic additive and hybrid techniques.

- The materials used vary from Inconel® 625 and 718, Monel® K-500, GRCop-84, and C18150 metal alloys.

- The thrust chambers designs tested ranged from 200 to 1,400 psia in a variety of propellants and mixture ratios, producing 1,000 to 35,000 lbf thrust.

- Workhorse chamber liners, bi-metallic chambers, augmented spark igniters, and larger scale channel-cooled nozzles have also been made.

LOX/methane Inconel® and GRCop-84 chamber throat sections and hot-fire testing
Metal Aerospace AM Parts

Example 3

- Engineers successfully hot-fire tested a heritage RS-25 rocket engine retrofitted with a pogo accumulator, which regulates LOX movement during flight to prevent destabilizing vibrations:
 - **Simpler**: over 100 welds eliminated
 - **More affordable**: costs reduced by nearly 35% and production time by more than 80%

- Welds require inspection and possible rework, and are points of possible failure; therefore, eliminating them reduces production costs and increases part reliability.

A technician for NASA’s RS-25 prime contractor exhibits the pogo accumulator (top and middle), which was subsequently hot-fire tested (bottom)

https://www.nasa.gov/exploration/systems/sls/nasa-tests-3-d-printed-rocket-part-to-reduce-future-sls-engine-costs
Metal Aerospace AM Parts
In Summary

• In addition to reductions in Design, Development, Test and Evaluation (DDT&E) time (7-10 years to 2-4 years), hardware lead time (3-6 years to 6 months), and costs (order-of-magnitude reductions possible), part counts can be dramatically reduced:

Reduction in parts count for a rocket engine

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160004218.pdf
Section 3

Governing Standards
Additive Manufacturing: Any process for making a three-dimensional object from a 3-D model or other electronic data source primarily through processes in which successive layers of material are deposited under computer control.
Guidelines documents and standards for additive manufacturing are in development at this time. The requirements of this NASA Technical Standard on M&P controls, materials design values, metallic and nonmetallic materials, and nondestructive inspection apply to hardware manufactured by additive techniques, just as they do for traditional manufacturing techniques.

For nonstructural, nonmetallic 3-D printed hardware, controlled and verified processes are essential; but other M&P aspects like flammability, toxic offgassing, and vacuum outgassing also apply, just as for any other nonmetallic material.

When structural hardware is manufactured by additive manufacturing techniques, a manufacturing and qualification plan shall be submitted to NASA and approved by the responsible NASA M&P and design organizations.

guidance (italics) and requirements excerpts from NASA-STD-6016A
Key aspects of producing structural metallic hardware by additive manufacturing techniques, such as direct metal laser sintering (DMLS) and selective laser melting (SLM), include proper development of structural design values and controlled processes, although other requirements, such as stress-corrosion resistance and corrosion control, also apply. Verification of appropriate process control should include first article inspection to verify proper material properties and macro/microstructure and mechanical property testing of integrally manufactured specimens from each hardware unit.

§ guidance (italics) excerpts from NASA-STD-6016A
Active Standards for AM within NASA: MSFC-STD-3716 & MSFC-SPEC-3717

https://www.nasa.gov/sites/default/files/atoms/files/msfcspec3717baseline.pdf

Released Oct. 18, 2017
Developing NASA Agency-Level Standards

MSFC-STD-3716

MSFC-SPEC-3717

65 AMRs

PCQRs for: Process definition QMPs

PCQRs for: Equipment and facility process control

NASA-STD-603X AM Standard for Crewed

NASA-STD-603X AM Standard for Un-Crewed

NASA-STD-603X AM Standard for Aero

NASA-SPEC-603X AM Spec for Equip and Fac.
General requirements govern the engineering and production practice and are paralleled by a Quality Management System (QMS).

Process control requirements provide the basis for reliable part design and production and include:
- qualified metallurgical processes (QMPs)
- equipment controls (ECP)
- personnel training
- material property development

Part Production Control requirements are typical of aerospace operations and must be met before placing a part into service.
Foundational Process Controls provide the basis for reliable part design and production.

Part Production Controls are typical of aerospace operations and include design, part classification, pre-production and production controls.
Key Quality Assurance Products

- Quality Management System, AS9100 (QMS)
- Additive Manufacturing Control Plan (AMCP)
- Equipment and Facility Control Plan (EFCP)
- Training Plan/Program
- Qualified Metallurgical Process Records (QMP)
- Statistical Process Controls
- Qualified Part Process (QPP)
- Production Engineering Controls
- Production Process Controls
- Acceptance Testing
 - Witness Testing
 - NDE
Key Quality Assurance Products

• **Quality Management System, AS9100 (QMS)**
 - [AMR-4] The CEO shall ensure a QMS conforming to SAE AS9100, Quality Management Systems – Requirements for Aviation, Space and Defense Organizations, or an approved equivalent, is in place and active at all entities involved in the design and production of L-PBF hardware.

• **Additive Manufacturing Control Plan (AMCP)**
 - [AMR-3] The CEO responsible for the design and manufacture of L-PBF hardware shall provide an AMCP that accomplishes each of the following:
 a) Documents the implementation of each of the requirements of this MSFC Technical Standard.
 b) Documents and provides rationale for any tailoring of the requirements of this MSFC Technical Standard.
 c) Documents the methods used to control compliance with these requirements by subcontractors and vendors.
 d) Provides for complete governance for the implementation of L-PBF such that, once approved by the procuring authority, the AMCP becomes the document used for verification of L-PBF requirements.
Key Quality Assurance Products

• **Equipment and Facility Control Plan (EFCP)**
 • [PCQR-24] An Equipment and Facility Control Plan (EFCP) shall be developed and maintained within the QMS that addresses, at minimum, the implementation of the requirements of L-PBF equipment and facility control of Section 4.5 and its subsections.
 • Examples of EFCP Controls
 • Feedstock Storage and Handling
 • Contamination and FOD control
 • Computer and Data Security
 • Operational Procedures and Checklists
 • Configurational Management of AM machines and equipment
 • Maintenance and Calibration
 • Machine Qualification
Key Quality Assurance Products

- Training Plan/Program
 - [PCQR-45] An active operator training program shall be defined, maintained, and implemented to meet the following objectives:
 a) Provide a consistent framework for training and certification requirements
 b) Provide clear delineations of abilities and responsibilities associated with granted certifications
 c) Provide operators with all necessary skills, knowledge, and experience to execute the responsibilities of their certification safely and reliably
 d) Provide for operator evaluations that demonstrate adequacy in skills, knowledge, and experience to grant certifications to personnel, ensuring only properly trained and experienced personnel have appropriate certifications
 e) Incorporate content regarding the importance, purpose, and use of the QMS for all certifications.
Key Quality Assurance Products

• **Qualified Metallurgical Process (QMP) Records**
 - Begins as a *Candidate* Metallurgical Process
 - Defines aspects of the basic, *part agnostic*, fixed AM process including:
 1. Feedstock
 2. Fusion Process
 3. Thermal Post-Process
 - **Qualification** of candidate process through rigorous evaluations
 - Enabling concept
 • Machine qualification and re-qualification
 • Process control metrics, SPC
 • Design values

Source: Fraunhofer IWU
Key Quality Assurance Products

• **Statistical Process Controls**

• Acceptance Criteria
 • Derived from PCRD
 • Acceptance criteria for witness tests
Key Quality Assurance Products

- **Qualified Part Process (QPP)**
 - Pre-Production Article Evaluation
 - Powder removal, dimensions, surface quality, mechanical properties, internal quality, microstructure, high risk areas...
 - **Additive Manufacturing Readiness Review**
 - Stakeholder review of production engineering record, part drawing, approved PPP, Pre-Production Article Report...
 - If successful, *AMRR demarcates when part process is qualified*
 - Complete part manufacturing process is locked for production
 - No changes without re-qualification or proper disposition
 - **QPP state is documented in the Quality Management System**

- **Production Engineering Controls**
- **Production Process Controls**
 - Manage and document Production
Key Quality Assurance Products

• Acceptance Testing
 • Witness Testing
 • [AMR-26] Witness sampling for each L-PBF build shall be described in the PPP, including sample types, designs, and quantities, their layout in the build volume, test methods, and acceptance criteria.
 • Required for all builds, varies with Part Class
 • Differing Stand Alone versus Continuous Production criteria

• NDE
 • [AMR-54] All L-PBF parts shall receive comprehensive NDE for surface and volumetric defects within the limitations of technique and part geometry unless otherwise substantiated as part of the Integrated Structural Integrity Rationale per section 6.1.4.

Focus of next section: AM Defects and NDE
AM QA Opportunities

There are two primary opportunities to ensure AM reliability for qualification and certification rationale:

1. In-Process Controls (Control what you do)
 - Qualify the AM Process and the AM Part Process
 - Understanding fundamentals
 - Recognizing the process failure modes (pFMEA)
 - Identifying observable metrics and witness capabilities
 - Meticulous process scrutiny through SPC

2. Post-Process Evaluation (Evaluate what you get)
 - Non-destructive Evaluation, Proof testing
 - Post-build process monitoring data evidence

Part reliability rationale comes from the sum of both in-process and post-process controls, weakness in one must be compensated in the other
Recently published:
AC7110/14 Audit Criteria for Laser and Electron Beam Metallic Powder Bed Additive Manufacturing
(Used as supplement to PRI AC7110)

- Good list of audit questions for suppliers
- Will not address all issues from MSFC-STD-3716, but provides excellent, detailed checklist and information.
Section 4

Additive Manufacturing Defects And NDE Challenges
AM Defects: Effect of Process

- Certain AM flaws (for example, voids and porosity) can occur in most or all AM parts (non-process specific), and can be characterized using existing methods for welded or cast parts.
- Other AM flaws (for example layer, cross layer, unconsolidated and trapped powder) are unique to PBF and new or better NDE detection methods are needed.

$\text{ISO TC 261 JG59, Additive manufacturing – General principles – Nondestructive evaluation of additive manufactured products, under development.}$

Note: DED = Directed Energy Deposition, PBF = Powder Bed Fusion, unconsolidated powder is synonymous with lack of fusion (LOF) flaws
AM Defects

- **General PBF and DED defects** - interested in lack of dimensional accuracy or warping, inclusions, process-induced porosity, gas-induced porosity, and cracks (potential structural implications or out-of-tolerance part):
AM Defects

- **Specific PBF defects** – interested in skipped layer/stop-start flaws, lack of fusion (LOF), and trapped powder due to potential structural implications or out-of-tolerance part:
Bulk Defects Causing Mechanical Property Degradation

Inclusion – Foreign material either non-metallic or metallic incorporated into the deposited material. Inclusions are typically oxides, nitrides, hydrides, carbides, or a combination thereof and may or may not have some coherency with the surrounding material.

CAUSES – Formed due to contamination of the chamber gas, input material or dirty build chamber.

EFFECTS – Inclusions can serve as stress concentrators and the locus for catastrophic part failure (degraded mechanical properties).

Energy-dispersive x-ray spectroscopy (EDS) mapping of aluminum oxide inclusions in an UNS N07718 part (MSFC)

Micro-CT scan (left) and optical scan of fracture surface (right) of a Ti6-4 tensile specimen showing the locus of failure coinciding with an inclusion (MSFC)
Inclusions

Powder characterization – ASTM F3049 defines feedstock characteristics which are considered useful to assure the confidence in the selected powder and in the final PBF part properties. Among those characteristics are the particle size and its distribution, the morphology (sphericity), the chemical composition, the flow characteristics, and the density of the powder. **X-ray CT is used to characterize the defect population, namely inclusions.**

![X-ray CT slice image of the powder showing high density inclusions, visible as bright particles](http://www.mdpi.com/1996-1944/10/5/522)

![SEM images of the fracture surface of a tensile specimen in the Z orientation showing close-up views of cracked inclusion (left) and an inclusion (right) with a brittle appearance.](http://www.mdpi.com/1996-1944/10/5/522)
Bulk Defects with Variable Effects
(may be significant or severe)

Void – A general term encompassing both irregularly-shaped or elongated cavities (process-induced porosity), and spherically-shaped cavities (gas-induced and keyhole porosity). These cavities can be empty (gas) or filled with partially or wholly unfused powder (LOF). Voids are distinct from intentionally added open cells to reduce weight.

CAUSES – See LOF, gas porosity, and keyhole porosity.

EFFECTS – Results in a less than fully dense part; at a sufficient quantity, size and distribution voids can degrade mechanical properties.

http://www.insidemetaladditivemanufacturing.com/blog/visual-guide-to-the-most-common-defects-in-powder-bed-fusion-technology
Bulk Defects with Variable Effects (may be significant or severe)

Lack of Fusion (LOF) – A type of process-induced porosity specific to unsintered (fully-melted) parts. Can be an empty cavity or contain unconsolidated powder. LOF typically occurs in the bulk, making its detection difficult. Like voids, LOF can occur across single (horizontal LOF) or multiple layers (vertical LOF).

CAUSES – 1) incomplete melting of a deposited layer onto a previously deposited solidified layer, 2) inadequate penetration of a deposited layer into the previous layer, 3) improper hatch spacing between two successive passes, or 4) "stop/start" process anomalies, caused by interruption of feedstock supply or short feed. 1) and 2) are caused by low power/fast scan rate settings.

EFFECTS – Like other forms of porosity and voids, LOF can cause a part to be less than fully dense, or degrade mechanical properties.
Lack of Fusion (LOF)

Defects (e.g., lack of fusion, voids) detected by micro-CT, need to be linked to probabilistic models for fracture, fatigue, and lifing predictions.

Fracture surface of as-built EBM Ti-6Al-4V tested in fatigue showing LoF defects perpendicular to the build direction.

Metallographic cross-section and fracture surface of as-built EBM Ti-6Al-4V tested in fatigue

https://link.springer.com/article/10.1007/s11837-015-1810-0
Keyhole Porosity

Keyhole Porosity, grain size, and surface roughness are all correlated with laser or electron beam power and velocity:

(a) Power-Velocity (P–V) map for electron beam (Arcam) processed Ti-6Al-4V showing regimes of good quality beads as well as size of beta grains. (b) Inset shows different scales of surface roughness of multi-layer beads produced via laser-based techniques at different P–V combinations.

https://link.springer.com/article/10.1007/s11837-015-1810-0

AM Defects: Classes and Subclasses

<table>
<thead>
<tr>
<th>Defect Class</th>
<th>Defect Subclass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>roughness, underfill, overfill, crater, stair stepping, worm track, contour separation</td>
</tr>
<tr>
<td>Porosity</td>
<td>spherical gas porosity, microporosity, void, surface breaking pores</td>
</tr>
<tr>
<td>Cracking</td>
<td>hot cracking, cold cracking, crater, cracking, HAZ as in DED to substrate, tearing</td>
</tr>
<tr>
<td>Lack of Fusion</td>
<td>cold lap, trapped powder, oxide lap, linear, planar, post HIP</td>
</tr>
<tr>
<td>Part Dimensions</td>
<td>external, internal, lattice, custom</td>
</tr>
<tr>
<td>Density</td>
<td>density, weight, volume, meets partial density spec</td>
</tr>
<tr>
<td>Inclusions</td>
<td>inclusions, segregation, banding, planar</td>
</tr>
<tr>
<td>Discoloration</td>
<td>oxidation</td>
</tr>
<tr>
<td>Residual Stress</td>
<td>reduced mechanical properties, out-of-tolerance dimensions</td>
</tr>
<tr>
<td>Hermetic Sealing</td>
<td>vacuum, pressure</td>
</tr>
</tbody>
</table>

Abbreviations used: -- = not applicable, DED = Directed Energy Deposition, HAZ = Heat Affected Zone, HIP = Hot Isostatic Pressing

\[\text{^A} \text{Abbreviations used: -- = not applicable, DED = Directed Energy Deposition, HAZ = Heat Affected Zone, HIP = Hot Isostatic Pressing}\]
AM Defects: Effect on NDE Selection

TABLE 4.3 Application of NDT to Detect Additive Manufacturing Defect Classes

| Defect Class | CT/RT/CR/DR | ET | MET | PCRT | PT | TT | UT | AE | LT | ND | MT | VT |
|-----------------------|-------------|----|-----|------|----|----|----|----|----|----|----|----|----|
| Surface | X\(^d\) | X\(^d\) | X | ... | ... | ... | ... | ... | ... | ... | ... | X |
| Porosity | X | X\(^d\) | ... | X | X\(^d\) | ... | X | ... | ... | ... | ... | X\(^e\) |
| Cracking | X | X\(^d\) | ... | X | X\(^d\) | X | X | X | X | X\(^e\) | ... | X |
| Lack of Fusion | X | X\(^d\) | ... | X | X\(^d\) | X | X | X | X\(^e\) | ... | X |
| Part Dimensions | X | ... | X | ... | ... | ... | ... | ... | ... | ... | ... | X\(^d\) |
| Density\(^f\) | X\(^d\) | ... | X | ... | ... | ... | ... | ... | ... | ... | ... | X |
| Inclusions | X\(^d\) | X\(^d\) | ... | X | ... | ... | ... | ... | ... | ... | ... | X |
| Discoloration | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | X |
| Residual Stress | ... | X\(^d,k\) | X | X | ... | ... | ... | ... | ... | ... | ... | X\(^e\) |
| Hermetic Sealing | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |

\(^d\) Includes Digital Imaging.

\(^f\) Especially helpful when characterizing internal passageways or cavities (complex geometry parts) for underfill and overfill, or other internal feature not accessible to MET, PT or VT (including borescopy).

\(^e\) Applicable if on surface.

\(^k\) Macroscopic cracks only.

\(^c\) If large enough to cause a leak or pressure drop across the part.

\(^o\) Conventional neutron radiography (NR) allows determination of internal and external dimensions.

\(^h\) Pycnometry (Archimedes principle).

\(^j\) Density variations will only show up imaged regions having equivalent thickness.

\(^j\) If inclusions are large enough and sufficient scattering contrast exists.

\(^j\) Residual stress can be assessed if resulting from surface post-processing (for example, peening).

Contact: Evgueni Todorov (EWI)

- Early results on NDE application to AM are documented.
- Report has a ranking system based on geometric complexity of AM parts to direct NDE efforts.
- Approach laid out for future work based on CT and PCRT and other NDE techniques.

Effect of AM Part Complexity on NDE
AFRL-RX-WP-TR-2014-0162

- Most NDE techniques can be used for Complexity Group§ 1 (Simple Tools and Components) and Group 2 (Optimized Standard Parts):

1

2

Effect of AM Part Complexity on NDE
AFRL-RX-WP-TR-2014-0162

- Only PCRT, CT, and LT can be used for Complexity Group 4 (Design-to-Constraint or Topology Optimized Parts) and Group 5 (Lattice Structures):

4 5

Effect of AM Part Complexity on NDE

AFRL-RX-WP-TR-2014-0162

NDE options for design-to-constraint parts and lattice structures: PCRT, CT/μCT, and LT
Main Findings
NASA/TM-2014-218560

- NDE identified as a **universal need spanning all aspects of additive manufacturing**.
- NDE identified as the **only effective way to ensure AM parts meet necessary NASA requirements**.
- NDE and materials experts **must** **develop techniques to characterize defects, determine their effect on performance, learn how to reliably detect them to screen for defects**, in order to qualify parts for use.

![Diagram showing NDE, Structure, Processing, Properties, and Performance](https://example.com/diagram.png)
• Deeply embedded flaws and hidden internal features can be difficult to detect or characterize or perform metrology on.

• High part anisotropy with 2D planar high aspect ratio \((a/c)\) (\(a\) is the crack depth and \(c\) is the half-surface length) defects perpendicular to Z-direction can be difficult to detect or characterize.

• Rough as-built surfaces interferes with surface-sensitive NDE method such as PT (penetrant testing) and ET (eddy current testing).

• Critical flaw types, sizes and distributions not defined for AM parts (NDE accept/reject criteria are needed).

• Lack of written procedures (standards for NDE of AM hardware are needed).
NASA-STD-5009 NDE Requirements
Fracture Critical Metal Hardware

• Must meet the NDE requirements given in NASA-STD-5009§, but the 90/95 Probability of Detection (POD) crack sizes generally will be inappropriate:

 NASA-STD-5009 crack geometries

 • AM crack geometries
 – While diagram (left) can be used, do 5009 crack sizes (next slide) apply?
 • What about other AM flaw types?
 – porosity/voids
 • V-LOF, H-LOF
 • gas
 • keyhole?
 – inclusions
 – surface roughness

§ NASA-STD-5009, Nondestructive Evaluation Requirements for Fracture-Critical Metallic Components
NASA-STD-5009 NDE Requirements
Fracture Critical Metal Hardware

• When considering cracks in AM parts, the NASA-STD-5009 crack sizes (right) will generally be unsubstantiated or even inappropriate.

• When considering pores and voids (non-crack flaws) in AM parts, other criteria in addition to flaw size must be considered:
 − Proximity to surface
 − Aspect ratio
 − N, number
 − Number of nearest neighbors
 − Distribution in regions of high design loads
 − Orientation relative to direction of principal stresses
Coming Reliance on In-Situ Monitoring

How to approach in-situ monitoring of AM processes?
- Harnessing the technology is only half the battle
- Detectors, data stream, data storage, computations
- Second half of the battle is quantifying in-situ process monitoring reliability

Community must realize that passive in-situ monitoring is an NDE technique
1. Understand physical basis for measured phenomena
2. Proven causal correlation from measured phenomena to a well-defined defect state
3. Proven level of reliability for detection of the defective process state
 - False negatives and false positives \rightarrow understanding and balance is needed

Closed loop in-situ monitoring adds significantly to the reliability challenge
- No longer a NDE technique – *may not be non-destructive*
- Establishing the reliability of the algorithm used to interact and intervene in the AM process adds considerable complexity over passive systems
Wrap-Up / Recap

• Reinforced basic understanding of AM processes
• Familiarity with MSFC-STD-3716 requirements for metal spaceflight hardware
• Key Quality Assurance Products
 • Quality Management System, AS9100 (QMS)
 • Additive Manufacturing Control Plan (AMCP)
 • Equipment and Facility Control Plan (EFCP)
 • Training Plan/Program
 • Qualified Metallurgical Process Records (QMP)
 • Statistical Process Controls
 • Qualified Part Process (QPP)
 • Production Engineering Controls
 • Production Process Controls
 • Acceptance Testing
 • Witness Testing
 • NDE
• Learn about important AM defect types and how to detect them.
• Learn about the challenges and best practices for nondestructive evaluation (NDE) of metal AM parts.
End of Webinar

Questions?
Back-up Content
Additive Manufacturing Industry Standards
Why Standards?

OMB A-119

Thursday
February 19, 1998

Part IV

Executive Office of the President
Office of Management and Budget

OMB Circular A-119: Federal Participation in the Development and Use of Voluntary Consensus Standards and in Conformity Assessment Activities; Notice

- Government agencies must consult with voluntary consensus organizations, and participate with such bodies in the development of standards when consultation and participation is in the public interest.
- If development of a standard is impractical, the agency must develop an explanation of the reasons for impracticality and the steps necessary to overcome the impracticality.
- Any standards developed must be necessarily non-duplicative and noncompetitive.

- NASA: improve mission reliability and safety
- Industry: boost business and develop technology for American commerce
ASTM Standards, Active
Committee F42 on Additive Manufacturing Technologies

Test Methods (F41.01):
- F2971-13 Standard Practice for Reporting Data for Test Specimens Prepared by Additive Manufacturing

Design (F42.04):
- ISO/ASTM52910-17 Standard Guidelines for Design for Additive Manufacturing

Terminology (F42.91):

As of March 2018
ASTM Standards, Active (cont.)

Committee F42 on Additive Manufacturing Technologies
Materials and Processes (F42.05):

- F2924-14 Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion
- F3001-14 Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) with Powder Bed Fusion
- F3049-14 Guide for Characterizing Properties of Metal Powders Used for Additive Manufacturing Processes
- F3055-14a Specification for Additive Manufacturing Nickel Alloy (UNS N07718) with Powder Bed Fusion
- F3056-14e1 Specification for Additive Manufacturing Nickel Alloy (UNS N06625) with Powder Bed Fusion
- F3091/F3091M-14 Specification for Powder Bed Fusion of Plastic Materials
- F3184-16 Specification for Additive Manufacturing Stainless Steel Alloy (UNS S31603) with Powder Bed Fusion
- F3187-16 Guide for Directed Energy Deposition of Metals
- F3301-18 Post Processing Methods – Standard Specification for Thermal Post-Processing Metal Parts Made Via Powder Bed Fusion

As of March 2018
Additive Manufacturing Standards
Additive Manufacturing Standardization Collaborative (AMSC)

- 89 standards gaps identified
 - 26 design gaps
 - 7 precursor materials gaps
 - 17 process control gaps
 - 6 post-processing gaps
 - 5 finished materials gaps
 - 5 NDE gaps
 - 15 Q&C gaps
 - 8 maintenance gaps

- Gaps were ranked low (19), medium (51), or high (19) priority depending on criticality, achievability, scope, and effect.

https://www.ansi.org/standards_activities/standards_boards_panels/amsc/amsc-roadmap
Additional Defect/NDE Content
Bulk Defects with Variable Effects
(may be significant or severe)

Porosity, Gas – Voids that are spherical or faceted in shape; with sufficient sources of gaseous species, may be intermittent within the deposit or elongated, interconnected, or chained due to the moving solidification front.

CAUSES – Absorption/desorption of gaseous species (nitrogen, oxygen) during solidification, or volatile contaminants (moisture or hydrocarbons) in the feedstock or fused part.

EFFECTS – If significant can cause a less than fully dense part, and/or cause in changes in material properties (modulus and Poisson’s ratio), or fatigue life (near surfaces pores).
Bulk Defects with Little or No Effect

Keyhole Pore – A type of porosity characterized by a circular depression formed due to instability of the vapor cavity during processing.

CAUSE – Created when the energy density is sufficiently high to cause a deep melt pool resulting in hydrodynamic instability of the surrounding liquid metal and subsequent collapse, leaving a void at the root of the keyhole.

EFFECT – Minor or no observed effect on performance.

[Diagram showing the process of keyhole formation and collapse]

Keyhole pores in an as-built L-PBF part (MSFC)
Bulk Defects with Unknown Effects (may be significant or severe)

Crack – Separation of material which may be intergranular or transgranular in metals; in severe cases can result in 2-D (planar) separation (delamination) between adjacent build layers.

CAUSES – Temperature differences during fusing or sintering, and/or relief of residual stresses upon cooling.

EFFECTS – Occurs as embedded or surface separation. Preferential propagation perpendicular to build axis (Z) can occur leading to delamination or layer separation.

Microscopic hot tear (NUAA)
Macroscopic delamination (University of Leuven)

Crack in an L-PBF combustion chamber (computed tomogram, MSFC)

https://doi.org/10.1080/14686996.2017.1361305
Some NDE techniques can be used for Complexity Group§ 3 (Embedded Features):

- **Can be used**: Process Compensated Resonance Testing (PCRT), Computed Tomography (CT), and Leak Testing (LT).

- **Use is conditional**: Eddy Current (ET), Penetrant Testing (Testing), Radiographic Testing (RT), Ultrasonic Testing (UT), Visual Testing (VT).

contacts: Jess Waller (WSTF); James Walker (MSFC); Eric Burke (LaRC); Ken Hodges (MAF); Brad Parker (GSFC)

• NASA Agency additive manufacturing efforts through 2014 are catalogued.
• Industry, government and academia were asked to share their NDE experience on AM parts.
• NDE state-of-the-art was documented.
• NIST and USAF additive manufacturing roadmaps were surveyed.
• A technology gap analysis was performed.

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140016447.pdf

NDE of AM Technology Gap Analysis
NASA/TM-2014-218560

Nondestructive Evaluation of Additive Manufacturing
State-of-the-Discipline Report

Jess M. Waller
White Sands Test Facility, Las Cruces, New Mexico

Bradford H. Parker
Goddard Space Flight Center, Greenbelt, Maryland

Kenneth L. Hodges
Goddard Space Flight Center, Greenbelt, Maryland

Eric R. Burke
Langley Research Center, Hampton, Virginia

James L. Walker
Marshall Space Flight Center, Huntsville, Alabama

Prepared for
Edward R. Geismer
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia

November 2014

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140016447.pdf
Spaceflight Hardware
NDE Considerations

• AM parts shall receive comprehensive NDE for volumetric and surface defects within the limitations of technique and part geometry.
• It is incumbent upon the structural assessment community to define critical initial flaw sizes (CIFS) for the AM part to define the objectives of the NDE.
• Knowledge of the CIFS for AM parts will allow the NDE and fracture control communities to evaluate risks and make recommendations regarding the acceptability of risk.
• CIFS defects shall be detected at the accepted probability of detection (POD), for example, 90/95, for fracture critical applications.
• NDE demonstration parts with simulated CIFS defects are used to demonstrate NDE detection capability.
• Demonstration of adequate part life starting from NASA-STD-5009 flaw sizes is generally inappropriate for fracture critical, damage tolerant AM parts.
Spaceflight Hardware
NDE Considerations

• For Class A parts, NDE indications of cracks, crack-like defects, or other findings of undetermined source should be elevated to senior review and disposition per applicable fracture control policy.
• Parts with high AM Risk may have regions inaccessible to NDE; understanding these risks requires identifying the inaccessible regions along with the CIFS.
• Parts with low AM risk should exhibit much greater coverage for reliable NDE.
• Multiple NDE techniques may be required to achieve full coverage.
• Surface inspection techniques (PT, ET, UT) may require the as-built surface to be improved for a successful inspection, depending on the defect sizes and the S/N ratio.
• For PT, surfaces improved using machining, for example, require etching prior to inspection to remove smeared metal.
 • Removal of the as-built AM surface to a level of visually smooth may be insufficient to reduce the NDE noise floor due to near-surface porosity and boundary artifacts.
• **NDE standard defect classes for welds and castings welding or casting defect quality standards will generally not be applicable.**
Spaceflight Hardware NDE Considerations

• Standards with NDE acceptance criteria for welding or casting quality are not considered applicable to L-PBF hardware.
• Relevant AM process defect types used must be considered.
• AM processes tend to prohibit volumetric defects with significant height in the build (Z) direction. The **concern instead is for planar defects**, such as aligned or chained porosity or even laminar cracks, that form along the build plane. The implications of this are:
 − planar defects are well suited for growth
 − planar defects generally have low contained volume
 − the orientation of defects of concern must known before inspection, especially when detection sensitivity depends on the defect orientation relative to the inspection direction
 − the Z-height of planar defects can be demanding on incremental step inspection methods such as CT
• Until an AM defects catalog and associated NDE detection limits for AM defects are established, NDE acceptance criteria shall be for part-specific point designs.