Design, Fabrication, and Critical Current Testing of No-Insulation Superconducting Rotor Coils for NASA’s High-Efficiency Megawatt Motor

Dr. Justin J. Scheidler, Thomas F. Tallerico

NASA Glenn Research Center
Materials and Structures Division
Rotating and Drive Systems Branch

2018 AIAA Electric Aircraft Technologies Symposium
Cincinnati, OH
July 12, 2018

Design & Testing of No-Insulation Superconducting Rotor Coils for NASA's HEMM
Motivation

- Reduced energy consumption, emissions, and noise of commercial transport aircraft [1]
 - Electrified aircraft propulsion (EAP) enables system-level benefits to these metrics
- EAP concepts require advances to electric machines
- NASA’s High-Efficiency Megawatt Motor (HEMM) sized as generator for NASA’s STARC-ABL concept

<table>
<thead>
<tr>
<th>Electric machines</th>
<th>Current design</th>
<th>With HEMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific power, kW/kg</td>
<td>13.2</td>
<td>16</td>
</tr>
<tr>
<td>Efficiency, %</td>
<td>96</td>
<td>98 to 99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance relative to STARC-ABL rev A</th>
<th>With HEMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel burn, %</td>
<td>–1 to –2</td>
</tr>
<tr>
<td>Waste heat in generator</td>
<td>½ to ¼ (-30 to –44 kW)</td>
</tr>
</tbody>
</table>
NASA’s High-Efficiency Megawatt Motor (HEMM)

- Sized for generator of NASA’s STARC-ABL concept
- Wound-field synchronous machine
 - Tolerant of stator fault
- Superconducting rotor
 - Negligible energy loss
 - Very strong magnetic excitation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated continuous power</td>
<td>1.4 MW</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>6,800 rpm</td>
</tr>
<tr>
<td>Tip speed</td>
<td>Mach 0.31</td>
</tr>
<tr>
<td>Rated torque</td>
<td>2 kNm</td>
</tr>
<tr>
<td>Specific power goal</td>
<td>16 kW/kg</td>
</tr>
<tr>
<td>Efficiency goal</td>
<td>>98 %</td>
</tr>
</tbody>
</table>
Outline

Talk 1 (Scheidler, 2018 AIAA P&E)

• Complete preliminary design package for rotor
 • Electromagnetic design & optimization
 • Rotor containment design & stress analysis

This talk

• Overview of current rotor design
• Fabrication & testing of sub-scale superconducting rotor coils
Outline

• Rotor & coil design
• Coil fabrication
• Critical current testing
• Conclusions
Rotor Design

Design process (see 2018 AIAA P&E paper)
- Defined current & thermal limits
 - Based on manufacturer data & safety factors
- Parametric studies of back iron’s width w and thickness t
 (2D & 3D, nonlinear FEA)
 - Optimized coil’s geometry by numerically maximizing # of turns in coil
 - Custom extrapolation of back iron’s B vs H response
- **Metrics:** performance • performance/mass • performance/cost
- Stress analysis of centrifugal loading (2D & 3D FEA)

### Parameter	Value
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical frequency</td>
<td>DC</td>
</tr>
<tr>
<td>Number of poles</td>
<td>12</td>
</tr>
<tr>
<td>Material</td>
<td>$\text{Solid Fe}{49.15}\text{Co}{48.75}\text{V}_2$</td>
</tr>
<tr>
<td>Outer diameter</td>
<td>30 cm</td>
</tr>
<tr>
<td>Inner diameter</td>
<td>18.9 to 20 cm</td>
</tr>
<tr>
<td>Axial length</td>
<td>12.5 cm</td>
</tr>
</tbody>
</table>

![Diagram of rotor design](image)

- Soft magnetic material (back iron)
- Region available for containment & clearances

National Aeronautics and Space Administration

Design & Testing of No-Insulation Superconducting Rotor Coils for NASA's HEMM
Rotor Design

- Dovetail retainer
- Coil fixture
- Ring retainer
- Solid FeCo back iron
- High temperature superconducting coil
Rotor Design
Coil Design

- 2nd generation high temperature superconductor (REBCO) selected
 - Commercially available in long piece length
 - Sufficient performance at “high” temperatures in moderately strong magnetic environments
- REBCO is a composite conductor in the form of thin tape
 - AC losses will be negligible
- No-insulation (NI) coils selected [9-11]
 - Fault tolerant
 - Higher \textit{engineering} current density
 - Higher mechanical strength

Self protection via no turn-to-turn insulation

No-insulation superconducting coils are very promising, but have not been studied for rotating systems
Coil Design

Coil characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-to-turn insulation</td>
<td>None</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>62.8 K</td>
</tr>
<tr>
<td>Operating current</td>
<td>51.5 A</td>
</tr>
<tr>
<td># of layers per coil</td>
<td>4</td>
</tr>
<tr>
<td># of turns per layer</td>
<td>~ 230</td>
</tr>
<tr>
<td>Solder</td>
<td>52In 48Sn</td>
</tr>
</tbody>
</table>

Superconductor characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>REBCO</td>
</tr>
<tr>
<td>Width</td>
<td>4 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>65 micron</td>
</tr>
<tr>
<td>Min. bend radius</td>
<td>15 mm</td>
</tr>
</tbody>
</table>

[Diagram of Coil's cross-section]

- Superconductor
- Separating plate
- Cryogenic epoxy
- Superconducting jumper
- Low melting temperature solder
Risk reduction testing

- Key risks of the superconducting coils
 - **Coils will fail when thermally cycled** due to thermal stresses
 - **Coils will fail when rotor is spun up** due to centrifugal stresses

- Risk reduction tests
 - **Thermal cycling**
 - **Goal**: demonstrate coils that are not degraded by thermal cycling
 - **Approach**: measure superconducting performance • subject to thermal shock • re-measure superconducting performance
 - **Proof**: negligible change in critical current & “n-value”
 - **Rotation** *(future work)*
 - **Goal**: demonstrate coils that are not degraded by high-speed rotation
 - **Approach**: measure superconducting performance • spin coils • re-measure superconducting performance
 - **Proof**: negligible change in critical current & “n-value”
Outline

• Rotor & coil design
• Coil fabrication
• Critical current testing
• Conclusions
Coil Fabrication

- Methodical development approach: simple, sub-scale realistic, full-scale
- 25-turn sub-scale coils
 - Fewer turns & shorter

dimensions in mm
Coil Fabrication

- 3D printed nylon winding fixture
 - Reduced lead time & cost
 - But, limited temperature
- Accurately establishes width of active region & height
- Fixture inverted for epoxy application
Outline

- Rotor & coil design
- Coil fabrication
- Critical current testing
- Conclusions
Critical Current Testing

• Critical current \(I_C = I_C(T, B, \theta) \)
• Coil mounted to G10 plate & suspended in liquid nitrogen
• **Measurements**: voltage & transport current

![Image of critical current testing setup]

- LN\textsubscript{2} dewar
- 6 ½ digit multimeter
- Power supply/amplifier
- Thermocouple signal conditioner
- Data acquisition
Critical Current Testing

- Voltage vs current response commonly described by
 \[V = V_c \left(\frac{I}{I_c} \right)^n \]
 where the critical voltage \(V_c = \frac{1}{\mu V/cm} \times \text{superconductor length} \)

- "\(n \)-value" indicates combined quality of superconductor & measurement
- Detect damage via changes in \(n \) and/or \(I_c \)

For this example
\[V_c = 0.36 \, \text{mV} \]
\[I_c = 75.9 \, \text{A} \]
\[n = 23.2 \]
Critical Current Testing – 1-layer coils

- Two 1-layer coils tested: V vs I response at 77 K in “self field”
 - Sanity check: measure for increasing & decreasing I
 - Thermal cycling tolerance: measure before & after 2 or 4 thermal shock cycles

Coil 1 (2 thermal cycles)

Coil 2 (4 thermal cycles)
Critical Current Testing – 1-layer coils

<table>
<thead>
<tr>
<th></th>
<th>Coil 1</th>
<th>Coil 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_c, A</td>
<td>n, –</td>
</tr>
<tr>
<td>Before thermal cycling</td>
<td>76.8</td>
<td>19.8</td>
</tr>
<tr>
<td>After thermal cycling</td>
<td>76.9</td>
<td>19.7</td>
</tr>
</tbody>
</table>

- Averaged results for increasing & decreasing I
- **Coil 1** (2 thermal cycles)
 - No detectable damage
- **Coil 2** (4 thermal cycles)
 - I_c increased by 1%, but n decreased by 9%
 - Inconclusive, but at worst only minor degradation of n
Critical Current Testing – 2-layer coils

- **2-layer coil requires superconducting joint** → solder introduces finite resistance
- After subtracting the linear trend, results analyzed as before
- **Coil 3 broke while attempting to demonstrate self-protection feature**
 - Damage occurred only in unprotected current lead

![Graph showing voltage vs. current for 2-layer coils](image)

![Image of damaged coil 3](image)

Coil 3

Coil 3
Critical Current Testing – 2-layer coils

Coil 4

- Current lead damaged during coil fabrication
 - I_c reduced and n-value significantly reduced
 - I_c increased by 3%, but n decreased by 13%
 - Inconclusive, but at worst only modest degradation of n

<table>
<thead>
<tr>
<th></th>
<th>I_c, A</th>
<th>n, –</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before thermal cycling</td>
<td>57.4</td>
<td>5.4</td>
</tr>
<tr>
<td>After 2 thermal cycles</td>
<td>58.3</td>
<td>4.7</td>
</tr>
<tr>
<td>After 6 thermal cycles</td>
<td>59.0</td>
<td>4.7</td>
</tr>
</tbody>
</table>

![Image of coil 4 with damaged lead]
Outline

• Rotor & coil design
• Coil fabrication
• Critical current testing
• Conclusions
Conclusions

• Discussed the design of the superconducting rotor of NASA’s 1.4 MW High Efficiency Megawatt Machine (HEMM)
 • Uninsulated superconducting coils selected to provide fault tolerance and significantly higher engineering current density
 • 2 key risks: resilience to thermal cycling and rotation
• 3D printed winding fixtures work well & allow short lead time
 • But, they prevent the use of some solders while the coil is fixture
• Initial thermal cycling measurements of 1-layer and 2-layer uninsulated coils
 • Tested up to $1.15I_c$ • 2 to 6 thermal shock cycles
 • After thermal cycling, I_c increased but n-value decreased
 • Results inconclusive, but suggest little to no degradation
Acknowledgements

- Samuel Chung (summer intern)
- NASA Advanced Air Transport Technology (AATT) Project

References

Superconductor current & thermal limits

- Critical current \((I_C) = I_C(T, B, \theta) \)
 - Datasheet values \(\theta = 0° \) and \(90° \) are insufficient
 - Datasheet specs de-rated twice: angular dependence & safety factor

\[\text{Safety factor} \]

\[\pm 20\% \] Estimate of wire variation

\[+ \pm 15\% \] Modeling inaccuracy

\[\pm 35\% \] (≈1.5 safety factor)
Superconductor current & thermal limits

- Measurements at $B = 2 \text{ T}$ obtained from manufacturer

Design spec
current 51.5 A
temperature $\leq 62.8 \text{ K}$

Valid operating regime
Optimization of rotor coil’s geometry

- Optimized coil’s geometry for given iron thickness & width by numerically maximizing # of turns
 - Rectangular coil cross section
 - Also outputs total length & cost of conductor, mass of iron+coil
 - 4 mm is optimal width of superconductor
Preliminary design – double dovetail rotor teeth

<table>
<thead>
<tr>
<th>Part</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>back iron</td>
<td>Hiperco 50 A</td>
</tr>
<tr>
<td>Sialon (SiN + Al₂O₃)</td>
<td></td>
</tr>
<tr>
<td>SiC</td>
<td></td>
</tr>
<tr>
<td>SupremEx 640XA (Al 6061 + SiC powder)</td>
<td></td>
</tr>
<tr>
<td>Ti-6Al-6V-2Sn</td>
<td></td>
</tr>
</tbody>
</table>

- **Double dovetail**: This refers to the tooth configuration that allows for continuous heat extraction.
- **Continuous shoulder**: This is a feature that ensures smooth heat flow between teeth.
- **Heat extraction tab**: This is a design element that facilitates the removal of heat from the rotor.
Critical Current Testing – 1 layer coils

<table>
<thead>
<tr>
<th>Test</th>
<th>Coil 1</th>
<th></th>
<th>Coil 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_c, A</td>
<td>n, –</td>
<td>I_c, A</td>
<td>n, –</td>
</tr>
<tr>
<td>Before thermal cycling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I increasing</td>
<td>76.9</td>
<td>18.5</td>
<td>75.8</td>
<td>24.6</td>
</tr>
<tr>
<td>I decreasing</td>
<td>76.6</td>
<td>21.0</td>
<td>75.9</td>
<td>23.2</td>
</tr>
<tr>
<td>After thermal cycling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I increasing</td>
<td>76.8</td>
<td>19.7</td>
<td>76.2</td>
<td>21.6</td>
</tr>
<tr>
<td>I decreasing</td>
<td>76.9</td>
<td>19.7</td>
<td>76.3</td>
<td>21.8</td>
</tr>
</tbody>
</table>