NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Advisory – Planned Maintenance: On Monday, July 15 at 9 PM Eastern the STI Compliance and Distribution Services will be performing planned maintenance on the STI Repository (NTRS) for approximately one hour. During this time users will not be able to access the STI Repository (NTRS).

Back to Results
Calculation of the rotor induced download on airfoilsInteractions between the rotors and wing of a rotary wing aircraft in hover have a significant detrimental effect on its payload performance. The reduction of payload results from the wake of lifting rotors impinging on the wing, which is at 90 deg angle of attack in hover. This vertical drag, often referred as download, can be as large as 15 percent of the total rotor thrust in hover. The rotor wake is a three-dimensional, unsteady flow with concentrated tip vortices. With the rotor tip vortices impinging on the upper surface of the wing, the flow over the wing is not only three-dimensional and unsteady, but also separated from the leading and trailing edges. A simplified two-dimensional model was developed to demonstrate the stability of the methodology. The flow model combines a panel method to represent the rotor and the wing, and a vortex method to track the wing wake. A parametric study of the download on a 20 percent thick elliptical airfoil below a rotor disk of uniform inflow was performed. Comparisons with experimental data are made where the data are available. This approach is now being extended to three-dimensional flows. Preliminary results on a wing at 90 deg angle of attack in free stream is presented.
Document ID
19910001551
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Lee, C. S.
(Sterling Federal Systems, Inc. Moffett Field, CA, United States)
Date Acquired
September 6, 2013
Publication Date
September 1, 1989
Publication Information
Publication: NASA, Ames Research Center, NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6
Subject Category
Aerodynamics
Accession Number
91N10864
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available