NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Optimum design of ninety degree bendsAn algorithm for the optimum design of an internal flow component to obtain the maximum pressure rise is presented. Maximum pressure rise in a duct with simultaneous turning and diffusion is shown to be related to the control of flow separation on the passage walls. Such a flow is usually associated with downstream conditions that are desirable in turbomachinery and propulsion applications to ensure low loss and stable performance. The algorithm requires the solution of an 'adjoint' problem in addition to the 'direct' equations governing the flow in a body, which in the present analysis are assumed to be the laminar Navier-Stokes equations. The theoretical framework and computational algorithms presented in this study are for the steady Navier-Stokes equations. A procedure is developed for the numerical solution of the adjoint equations. This procedure is coupled with a direct solver in a design iteration loop, that provides a new shape with a higher pressure rise. This procedure is first validated for the design of optimum plane diffusers in two-dimensional flow. The direct Navier-Stokes and the 'adjoint' equations are solved using a finite volume formulation for spatial discretization in an artificial compressibility framework. A simplified version of the above approach is then utilized to design ninety degree diffusing bends. Calculations were carried out for a mean radius ratio at inlet of 2.5 and Reynolds numbers varying from 100 to 500. While at this stage laminar flows is assumed, it is shown that a similar approach can be conceived for turbulent flows.
Document ID
19920023030
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Modi, Vijay
(Columbia Univ. New York, NY, United States)
Cabuk, Hayri
(Columbia Univ. New York, NY, United States)
Huan, Jian-Chun
(Columbia Univ. New York, NY, United States)
Quadracci, Richard
(Columbia Univ. New York, NY, United States)
Date Acquired
September 6, 2013
Publication Date
July 1, 1992
Publication Information
Publication: NASA. Goddard Space Flight Center, Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, Part 2
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
92N32274
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available