NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Numerical investigation of the Earth's rotation during a complete precession cycleA theory for the long-term rotational motion of the quasi-rigid Earth was constructed by numerical integration. The theory spans 72,000 years centered about 1968 A.D., and provides accurate rotational and positional data for the Earth in the recent past and the near future. The physical model is termed dynamically consistent because developments for the active forces and torques are truncated based solely on their magnitudes regardless of their origin. The model includes all appropriate forces and torques due to the geopotential and tidal effects as well as lunisolar and planetary contributions. The elastic and inelastic deformations due to tidal action were too small to affect the mass properties of the Earth at the truncation level of the model. However, long-term dissipative effects of the tidal forces and torques were not negligible. These considerations gave the model its quasi-rigid characterization. The numerical output provided both rotational and orbital-element data. The data were fitted throughout the 72,000-year range using Chebyshev polynomial series.
Document ID
19930009776
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Richardson, David L.
(Cincinnati Univ. OH, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1992
Publication Information
Publication: NASA. Goddard Space Flight Center, Orbital, Rotational and Climatic Interactions
Subject Category
Geophysics
Accession Number
93N18965
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available