NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A compressible near-wall turbulence model for boundary layer calculationsA compressible near-wall two-equation model is derived by relaxing the assumption of dynamical field similarity between compressible and incompressible flows. This requires justifications for extending the incompressible models to compressible flows and the formulation of the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilational part, which is directly affected by these changes. This approach isolates terms with explicit dependence on compressibility so that they can be modeled accordingly. An equation that governs the transport of the solenoidal dissipation rate with additional terms that are explicitly dependent on the compressibility effects is derived similarly. A model with an explicit dependence on the turbulent Mach number is proposed for the dilational dissipation rate. Thus formulated, all near-wall incompressible flow models could be expressed in terms of the solenoidal dissipation rate and straight-forwardly extended to compressible flows. Therefore, the incompressible equations are recovered correctly in the limit of constant density. The two-equation model and the assumption of constant turbulent Prandtl number are used to calculate compressible boundary layers on a flat plate with different wall thermal boundary conditions and free-stream Mach numbers. The calculated results, including the near-wall distributions of turbulence statistics and their limiting behavior, are in good agreement with measurements. In particular, the near-wall asymptotic properties are found to be consistent with incompressible behavior; thus suggesting that turbulent flows in the viscous sublayer are not much affected by compressibility effects.
Document ID
19930018244
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
So, R. M. C.
(Arizona State Univ. Tempe, AZ, United States)
Zhang, H. S.
(Arizona State Univ. Tempe, AZ, United States)
Lai, Y. G.
(Arizona State Univ. Tempe, AZ, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: California State Univ., The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
93N27433
Funding Number(s)
CONTRACT_GRANT: NAG1-1080
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available