NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Vibration of thermally buckled composite plates with initial deflections using triangular elementsA consistent finite element formulation is presented for the analysis of thermal postbuckling and free vibration of thermally buckled thin, laminated composite plates subjected to large temperature change. The influence of moderately large initial imperfections in deflection on the thermal postbuckling deflection and the vibration characteristics of the buckled plate is also investigated. The finite element equations of motion are derived from the principle of virtual work. These equations can be mathematically separated into two sets and solved in sequence. The first set of equations yields the particular solution of static thermal postbuckling deflection, and the second set of equations gives the homogeneous solution of vibration characteristics on the buckled plate. The first set of static equations is solved by using Newton-Raphson iteration method. The tangent stiffness matrix in the final iteration is equal to the total stiffness matrix of the second set of dynamic equations. This feature saves tremendous computation time in comparing with using the conventional approach. The influence of lamination angle, temperature distribution, plate planform of arbitrary shape, and boundary support conditions on postbuckling and vibration behavior are investigated.
Document ID
19930049898
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Zhou, R. C.
(NASA Langley Research Center Hampton, VA, United States)
Xue, David Y.
(NASA Langley Research Center Hampton, VA, United States)
Mei, Chuh
(Old Dominion Univ. Norfolk, VA, United States)
Date Acquired
August 16, 2013
Publication Date
January 1, 1993
Publication Information
Publication: In: AIAA(ASME)ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 34th and AIAA/ASME Adaptive Structures Forum, La Jolla, CA, Apr. 19-22, 1993, Technical Papers. Pt. 1 (A93-33876 1
Publisher: American Institute of Aeronautics and Astronautics
Subject Category
Structural Mechanics
Report/Patent Number
AIAA PAPER 93-1321
Report Number: AIAA PAPER 93-1321
Accession Number
93A33895
Funding Number(s)
CONTRACT_GRANT: NAG1-1358
CONTRACT_GRANT: NAG1-1431
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available