NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Probabilistic simulation of stress concentration in composite laminatesA computational methodology is described to probabilistically simulate the stress concentration factors in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The probabilistic composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties while probabilistic finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate stress concentration factors such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using it to simulate the stress concentration factors in composite laminates made from three different composite systems. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the stress concentration factors are influenced by local stiffness variables, by load eccentricities and by initial stress fields.
Document ID
19930049994
Document Type
Conference Paper
Authors
Chamis, C. C. (NASA Lewis Research Center Cleveland, OH, United States)
Murthy, P. L. N. (NASA Lewis Research Center Cleveland, OH, United States)
Liaw, L. (Sverdrup Technology, Inc. Brook Park, OH, United States)
Date Acquired
August 16, 2013
Publication Date
January 1, 1993
Publication Information
Publication: In: AIAA(ASME)ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 34th and AIAA/ASME Adaptive Structures Forum, La Jolla, CA, Apr. 19-22, 1993, Technical Papers. Pt. 2 (A93-33876 1
Subject Category
COMPOSITE MATERIALS
Report/Patent Number
AIAA PAPER 93-1442
Distribution Limits
Public
Copyright
Other

Related Records

IDRelationTitle19930049879Analytic PrimaryAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 34th and AIAA/ASME Adaptive Structures Forum, La Jolla, CA, Apr. 19-22, 1993, Technical Papers. Pts. 1-6