NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Si-29 NMR spectroscopy of naturally-shocked quartz from Meteor Crater, Arizona: Correlation to Kieffer's classification schemeWe have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.
Document ID
19940007615
Document Type
Conference Paper
Authors
Boslough, M. B. (Sandia National Labs. Albuquerque, NM, United States)
Cygan, R. T. (Sandia National Labs. Albuquerque, NM, United States)
Kirkpatrick, R. J. (Illinois Univ. Urbana., United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
Subject Category
INORGANIC AND PHYSICAL CHEMISTRY
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle19940007055Analytic PrimarySixth Annual Workshop on Space Operations Applications and Research (SOAR 1992), volume 219940007543Analytic PrimaryTwenty-fourth Lunar and Planetary Science Conference. Part 1: A-F