NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Midplane temperatures in the solar nebulaCosmochemical analyses of meteorites imply that maximum temperatures in the inner solar nebula were on the order of 1300 K, yet standard viscous accretion disk models predict much lower midplane temperatures (approx. 300 K at 2 AU to 3 AU) in a minimum mass nebula. A second-order accurate radiative hydrodynamics code has been used to construct models of the late-phase solar nebula appropriate for low-mass star formation (M is approximately 10(exp -6) to 10(exp -5) solar-M yr(exp -1). For a minimum mass (0.02 solar-M) nebula and a solar-mass protostar, the new models show that compressional heating due to mass accretion onto the nebula and subsequent vertical contraction of the nebula are sufficient to lead to midplane temperatures T(sub m) greater than 1400 K at 1 AU and T(sub m) greater than 1000 K at 2.5 AU.
Document ID
19940007616
Document Type
Conference Paper
Authors
Boss, A. P. (Carnegie Institution of Washington Washington, DC, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
Subject Category
SOLAR PHYSICS
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle19940007055Analytic PrimarySixth Annual Workshop on Space Operations Applications and Research (SOAR 1992), volume 219940007543Analytic PrimaryTwenty-fourth Lunar and Planetary Science Conference. Part 1: A-F