NTRS - NASA Technical Reports Server

Back to Results
Separation of spallation and terrestrial C-14 in chondritesWeathering products and contamination severely hamper our ability to accurately measure the C-14 spallation component in meteorites, but can give insights into a sample's terrestrial history. A procedure was developed to measure the C-14 in these components using CO and CO2 separations from temperature extractions from 200-500 mg of material. The Bruderheim (L6) chondrite was chosen as a standard following the practice of previous researchers, crosschecked against Peace River (L6), Abee (EH4), and Juvinas (EUC). Low temperature fractions (less than 900 C) give C-14 signatures consistent with a modern terrestrial C-14 source; melt fractions show elevated levels attesting to a spallogenic origin. Higher yields of CO in the melt fraction are less affected by the low levels of experimental contamination than the CO2. This fraction gave a mean CO:CO2 ratio in Bruderheim of 81.6 +/- 7.7; the ratio of the spallation component is 79.8 +/- 8.1. These values suggest equilibrium release of gases on the olivine-silica-pyroxene-iron buffer. This is corroborated by approximately equal release of the two components at 900 C. The chondrites gave an average saturation level of 54.3 +/- 2.9 dpm/kg; the achondrite gave 49.6 +/- 2.0 dpm/kg. No clear correlation with oxygen content is apparent, though shielding effects have yet to be evaluated. A further evaluation of this subject matter is given.
Document ID
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Cresswell, R. G.
(Toronto Univ. Ontario)
Beukens, R. P.
(Toronto Univ. Ontario)
Rucklidge, J. C.
(Toronto Univ. Ontario)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
Subject Category
Accession Number
Distribution Limits
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available