NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Application of a Reynolds stress model to separating boundary layersSeparating turbulent boundary layers occur in many practical engineering applications. Nonetheless, the physics of separation/reattachment of flows is poorly understood. During the past decade, various turbulence models were proposed and their ability to successfully predict some types of flows was shown. However. prediction of separating/reattaching flows is still a formidable task for model developers. The present study is concerned with the process of separation from a smooth surface. Features of turbulent separating boundary layers that are relevant to modeling include the following: the occurrence of zero wall shear stress, which causes breakdown of the boundary layer approximation; the law of the wall not being satisfied in the mean back flow region; high turbulence levels in the separated region; a significant low-frequency motion in the separation bubble; and the turbulence structure of the separated shear layer being quite different from that of either the mixing layers or the boundary layers. These special characteristics of separating boundary layers make it difficult for simple turbulence models to correctly predict their behavior.
Document ID
19940007827
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Ko, Sung HO
(Stanford Univ. CA, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Annual Research Briefs, 1992
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
94N12299
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available