NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Probability density distribution of velocity differences at high Reynolds numbersRecent understanding of fine-scale turbulence structure in high Reynolds number flows is mostly based on Kolmogorov's original and revised models. The main finding of these models is that intrinsic characteristics of fine-scale fluctuations are universal ones at high Reynolds numbers, i.e., the functional behavior of any small-scale parameter is the same in all flows if the Reynolds number is high enough. The only large-scale quantity that directly affects small-scale fluctuations is the energy flux through a cascade. In dynamical equilibrium between large- and small-scale motions, this flux is equal to the mean rate of energy dissipation epsilon. The pdd of velocity difference is a very important characteristic for both the basic understanding of fully developed turbulence and engineering problems. Hence, it is important to test the findings: (1) the functional behavior of the tails of the probability density distribution (pdd) represented by P(delta(u)) is proportional to exp(-b(r) absolute value of delta(u)/sigma(sub delta(u))) and (2) the logarithmic decrement b(r) scales as b(r) is proportional to r(sup 0.15) when separation r lies in the inertial subrange in high Reynolds number laboratory shear flows.
Document ID
19940007832
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Praskovsky, Alexander A.
(Tsentralni Aerogidrodinamicheskii Inst. Moscow, Ussr)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Annual Research Briefs, 1992
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
94N12304
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available