NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Search for subgrid scale parameterization by projection pursuit regressionThe dependence of subgrid-scale stresses on variables of the resolved field is studied using direct numerical simulations of isotropic turbulence, homogeneous shear flow, and channel flow. The projection pursuit algorithm, a promising new regression tool for high-dimensional data, is used to systematically search through a large collection of resolved variables, such as components of the strain rate, vorticity, velocity gradients at neighboring grid points, etc. For the case of isotropic turbulence, the search algorithm recovers the linear dependence on the rate of strain (which is necessary to transfer energy to subgrid scales) but is unable to determine any other more complex relationship. For shear flows, however, new systematic relations beyond eddy viscosity are found. For the homogeneous shear flow, the results suggest that products of the mean rotation rate tensor with both the fluctuating strain rate and fluctuating rotation rate tensors are important quantities in parameterizing the subgrid-scale stresses. A model incorporating these terms is proposed. When evaluated with direct numerical simulation data, this model significantly increases the correlation between the modeled and exact stresses, as compared with the Smagorinsky model. In the case of channel flow, the stresses are found to correlate with products of the fluctuating strain and rotation rate tensors. The mean rates of rotation or strain do not appear to be important in this case, and the model determined for homogeneous shear flow does not perform well when tested with channel flow data. Many questions remain about the physical mechanisms underlying these findings, about possible Reynolds number dependence, and, given the low level of correlations, about their impact on modeling. Nevertheless, demonstration of the existence of causal relations between sgs stresses and large-scale characteristics of turbulent shear flows, in addition to those necessary for energy transfer, provides important insight into the relation between scales in turbulent flows.
Document ID
19940010276
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Meneveau, C.
(Johns Hopkins Univ. Baltimore, MD, United States)
Lund, T. S.
(Stanford Univ. CA., United States)
Moin, Parviz
(Stanford Univ. CA., United States)
Date Acquired
September 6, 2013
Publication Date
November 1, 1992
Publication Information
Publication: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 4: Proceedings of the 1992 Summer Program
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
94N14749
Funding Number(s)
CONTRACT_GRANT: N00014-92-J-1109
CONTRACT_GRANT: NSF CTS-91-13048
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available