NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Influence of fiber packing structure on permeabilityThe study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.
Document ID
19940012384
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Cai, Zhong
(Drexel Univ. Philadelphia, PA, United States)
Berdichevsky, Alexander L.
(CR Industries Elgin, IL., United States)
Date Acquired
September 6, 2013
Publication Date
August 1, 1993
Publication Information
Publication: NASA. Langley Research Center, FIBER-TEX 1992: The Sixth Conference on Advanced Engineering Fibers and Textile Structures for Composites
Subject Category
Composite Materials
Accession Number
94N16857
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available