NTRS - NASA Technical Reports Server

Back to Results
Formation and evolution of radial fracture systems on VenusA survey of approximately 90 percent of the surface of Venus using Magellan data has been carried out to locate all radial fracture systems and to assess their association with other features such as volcanic edifices and coronae. Squyres et al. and Stofan et al. have discussed the association of radial fracture features in relation to coronae features, our approach was to assess the associations of all of the fracture systems. These fracture systems have two broad types of form - some fracture systems are associated with updomed topography, radiate from a point and have relatively uniform fracture lengths while others have a wider range of fracture lengths and radiate from the outer edge of a central caldera. Squyres et al. and Stofan et al. have interpreted both types of feature as reflecting tectonic fracturing resulting from uplift of the surface as a mantle plume impinges upon the crust. While it is true that a number of features are related to uplift and that such uplift will induce stresses consistent with radial fracturing, we explore the possibility that these fractures are not exclusively of tectonic origin. Purely tectonic fracturing will tend to generate a few main fractures/faults along which most of the stresses due to uplift will be accommodated leading to the triple-junction form common for terrestrial updoming. Though this type of feature is observed on Venus (e.g., feature located at 34S86), the majority of radial fracture systems display much more intensive fracturing than this through a full 360 degrees; this is difficult to explain by purely tectonic processes. The association of many of the fractures with radial lava flows leads us to interpret these fractures as reflecting dike emplacement: the form of the fractures being consistent with primarily vertical propagation from the head of a mantle plume. In the case of the second type of fracture system (those radiating from a central caldera), an even stronger case can be made that the fractures are not of tectonic origin. These features are not as commonly associated with updoming of the surface and where they are, the fractures extend out well beyond the edge of the topographic rise - an observation which is not consistent with the fractures being of tectonic uplift origin. Furthermore the fractures have a distribution of lengths (many short, fewer long) which is characteristic of dike swarms, and show direct associations with calderas and lava flows consistent with a volcanic origin. In addition, the longest fractures have a radial pattern only close to the center of the system but bend with distance to align themselves with the regional stress field - this behavior is very difficult to explain on purely tectonic grounds but is a pattern commonly seen for terrestrial dikes. For these reasons, we argue that many, if not the majority, of radial fracture systems found on Venus are the surface reflection of dike swarms, those associated with positive topography reflecting vertical emplacement and those radiating from calderas reflecting lateral propagation.
Document ID
Document Type
Conference Paper
Parfitt, E. A. (Brown Univ. Providence, RI, United States)
Head, James W. (Brown Univ. Providence, RI, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z
Subject Category
Distribution Limits
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle19940015909Analytic PrimaryWorkshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution19940016163Analytic PrimaryTwenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z