NTRS - NASA Technical Reports Server

Back to Results
The roughness of the Martian surface: A scale dependent modelIn the coming decade, several lander missions to Mars are planned (e.g., MESUR Pathfinder, MESUR). One of the dangers facing planners of these missions is the rough topography observed at both Viking Lander sites. Both landing sites are ubiquitously covered with meter-scale boulders. Objects of this size pose obvious threats to soft landers, especially at Mars where the distance from Earth causes prohibitive time lags between the transmission of commands and feedback from the spacecraft. An obvious solution is to scout for a 'smooth' site prior to the landing. However, the best resolutions realizable on current and future missions (i.e., Mars Observer) are on the order of several meters. Even at this scale, boulders of 1-2 meters in size are unresolvable. Additionally, the amount of time and spacecraft resources required to search even a small area of the planet are unrealistic given other mission objectives. An alternative is to determine the 'roughness' of the surface at a subpixel scale using bidirectional reflectance observations. Much larger areas of the planet can be searched, and much of the search can easily be automated. The morphology of the martian plains observed by the Viking Landers is physically simple. The surface is covered with a layer (approximately flat lying) of aeolian sediment from which numerous outcrops of bedrock and boulders protrude. This morphology, while simple, will be difficult to characterize from orbit using traditional bidirectional reflectance models for two reasons. First, modeling the surface as facets with Gaussian or exponential slope distributions is not realistic given the morphology described above. Second, the roughness parameter is an 'average' of the roughness at scales ranging from the wavelength of light being scattered to the pixel size of the observation. Thus, there is no definite scale of roughness that can be extracted from the Hapke roughness parameter. Using the concepts of geometric and boolean models developed by several workers, we have developed a model for the bidirectional reflectance of a surface morphology comparable to that observed at the Viking Lander sites.
Document ID
Document Type
Conference Paper
Shepard, M. K. (Washington Univ. Saint Louis, MO, United States)
Guinness, E. A. (Washington Univ. Saint Louis, MO, United States)
Arvidson, R. E. (Washington Univ. Saint Louis, MO, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z
Subject Category
Distribution Limits
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle19940015909Analytic PrimaryWorkshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution19940016163Analytic PrimaryTwenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z