NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A dual reciprocal boundary element formulation for viscous flowsThe advantages inherent in the boundary element method (BEM) for potential flows are exploited to solve viscous flow problems. The trick is the introduction of a so-called dual reciprocal technique in which the convective terms are represented by a global function whose unknown coefficients are determined by collocation. The approach, which is necessarily iterative, converts the governing partial differential equations into integral equations via the distribution of fictitious sources or dipoles of unknown strength on the boundary. These integral equations consist of two parts. The first is a boundary integral term, whose kernel is the unknown strength of the fictitious sources and the fundamental solution of a convection-free flow problem. The second part is a domain integral term whose kernel is the convective portion of the governing PDEs. The domain integration can be transformed to the boundary by using the dual reciprocal (DR) concept. The resulting formulation is a pure boundary integral computational process.
Document ID
19940019193
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Lafe, Olu
(OLTech Corp. Chesterland, OH, United States)
Date Acquired
September 6, 2013
Publication Date
November 1, 1993
Publication Information
Publication: NASA. Lewis Research Center, The Fifth Annual Thermal and Fluids Analysis Workshop
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
94N23666
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available