NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
New concepts for Reynolds stress transport equation modeling of inhomogeneous flowsThe ability to model turbulence near solid walls and other types of boundaries is important in predicting complex engineering flows. Most turbulence modeling has concentrated either on flows which are nearly homogeneous or isotropic, or on turbulent boundary layers. Boundary layer models usually rely very heavily on the presence of mean shear and the production of turbulence due to that mean shear. Most other turbulence models are based on the assumption of quasi-homogeneity. However, there are many situations of engineering interest which do not involve large shear rates and which are not quasi-homogeneous or isotropic. Shear-free turbulent boundary layers are the prototypical example of such flows, with practical situations being separation and reattachment, bluff body flow, high free-stream turbulence, and free surface flows. Although these situations are not as common as the variants of the flat plate turbulent boundary layer, they tend to be critical factors in complex engineering situations. The models developed are intended to extend classical quasi-homogeneous models into regions of large inhomogeneity. These models do not rely on the presence of mean shear or production, but are still applicable when those additional effects are included. Although the focus is on shear-free boundary layers as tests for these models, results for standard shearing boundary layers are also shown.
Document ID
19940019670
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Perot, J. Blair
(Stanford Univ. CA, United States)
Moin, Parviz
(Stanford Univ. CA, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1993
Publication Information
Publication: Annual Research Briefs, 1993
Subject Category
Aerodynamics
Accession Number
94N24143
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available