NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A widely adaptable habitat construction system utilizing space resourcesThis study suggests that the cost of providing accommodations for various manned activities in space may be reduced by the extensive use of resources that are commonly found throughout the solar system. Several concepts are proposed for converting these resources into simple products with many uses. Concrete is already being considered as a possible moonbase material. Manufacturing equipment should be as small and simple as possible, which leads to the idea of molding it into miniature modules that can be produced and assembled in large numbers to create any conceivable shape. Automated equipment could build up complex structures by laying down layer after layer in a process resembling stereolithography. These tiny concrete blocks handle compression loads and provide a barrier to harmful radiation. They are joined by a web of tension members that could be made of wire or fiber-reinforced plastic. The finished structure becomes air-tight with the addition of a flexible liner. Wire can be made from the iron modules found in lunar soil. In addition to its structural role, a relatively simple apparatus can bend and weld it into countless products like chairs and shelving that would otherwise need to be supplied from Earth. Wire woven into a loose blanket could be an effective micrometeoroid shield, tiny wire compression beams could be assembled into larger beams which in turn form larger beams to create very large space-frame structures. A technology developed with lunar materials could be applied to the moons of Mars or the asteroids. To illustrate its usefulness several designs for free-flying habitats are presented. They begin with a minimal self-contained living unit called the Cubicle. It may be multiplied into clusters called Condos. These are shown in a rotating tether configuration that provides a substitute for gravity. The miniature block proposal is compared with an alternate design based on larger triangular components and a tetrahedral geometry. The overall concept may be expanded to envision city-sized self-sufficient environments where humans could confortably live their entire lives. One such proposal is the Hive. It is configured around a unique sunlight collection system that could provide all its energy needs and that could be scaled up to compensate for the reduced solar intensity at greater distances from the sun. Its outer perimeter consists of a cylindrical section mated to two conical end walls that taper inwards toward a small aperture at the center of rotation. Light collected by two huge mirrors of unusual design enters the aperture and is redirected to the inside of the cylinder. The conical end walls are shielded from direct sunlight and are designed to radiate heat into space. They are lined with air ducts that passively recirculate the atmosphere while extracting moisture by condensation. Although there is no immediate demand for spacecraft on this scale, their consideration can influence even the earliest stages of the development process.
Document ID
19940022871
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Wykes, Harry B.
(Brubaker Group Los Angeles, CA, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1993
Publication Information
Publication: NASA. Lewis Research Center, Vision 21: Interdisciplinary Science and Engineering in the Era of Cyberspace
Subject Category
Man/System Technology And Life Support
Accession Number
94N27374
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available