NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Linear stability theory and three-dimensional boundary layer transitionThe viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.
Document ID
19940029024
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Spall, Robert E.
(High Technology Corp. Hampton, VA, United States)
Malik, Mujeeb R.
(High Technology Corp. Hampton, VA, United States)
Date Acquired
September 6, 2013
Publication Date
April 1, 1992
Publication Information
Publication: NASA. Langley Research Center, First Annual High-Speed Research Workshop, Part 4
Subject Category
Aerodynamics
Accession Number
94N33530
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available